


Working with MQTT and InfluxDB

Introduction
MQTT is a protocol for machine-to-machine communication based on a publish/subscribe model. This

means IoT devices publish messages to a broker into a specific topic. The broker acts as an intermediary

and lets other devices subscribe to topics to receive messages. Devices can publish messages, subscribe

to topics, or both. This is powerful because it lets IoT devices communicate with each other and act on

information from other devices quickly. Developers can define topics based on location, the type of data

being collected, or any other relevant category. MQTT is lightweight and ideal for situations that require a

small resource footprint.

Workers at IBM and Arcom developed MQTT in 1999 to retrieve data from industrial equipment in remote

areas. IBM used MQTT internally for a decade before releasing MQTT 3.1 in 2010, which allowed public

users to make their own implementations. It is very popular with IoT developers, who use it as the

backbone for many open source brokers and client libraries. Since 2013, OASIS has overseen the

management of the MQTT protocol. It became the defacto default protocol in the IoT industry because of

its ability to handle environments with intermittent network connectivity, hardware with low processing

power, and constrained bandwidth.

MQTT exists to pass along data generated by IoT devices. Users leveraging that data still need a way to

collect, store, and analyze it. This paper is an introduction to MQTT and includes the benefits and

challenges of working with it, as well as some general use cases.

What is MQTT?
MQTT is a protocol that connects brokers and clients. A broker acts as a middle man for devices sending

data. It lets each device establish one connection with the broker, rather than a new connection with every

device it needs to communicate with. Client devices run MQTT client software in order to connect to a

broker. They can both publish messages to the broker and subscribe to topics to receive messages. Every

message sent to the broker needs a topic, which can be any string identifier that lets devices retrieve the

information they need, such as location, data type, or device ID. Developers can add new topics to their

application at any point. MQTT also supports wildcard operators for creating dynamic topics.

MQTT lets clients choose an Expiration Interval to tell the broker how long to hold a message before

deleting it. It also has a Keep Alive function, which lets a developer set a time interval to confirm the

connection between a broker and a client. If a client doesn’t send or receive messages during that interval,

the broker will ping the client. If there is no response, it registers the client as disconnected.

2 / 7

https://influxdata.com/mqtt
https://en.wikipedia.org/wiki/OASIS_(organization)


Another MQTT feature is Retained Messages. Developers can flag messages for a broker to store so any

client that subscribes to a new topic receives the newest retained message as an update, instead of

waiting for devices to send new messages to the broker.

MQTT has three Quality of Service levels so developers can designate how thoroughly they want different

kinds of messages delivered.

1. Messages can be sent “at most once” so that a broker sends messages to a subscribed client

once it’s connected, without informing the publishing client.

2. The level “at least once” means the message will definitely be delivered, but could be sent or

delivered multiple times. Developers need to account for this in their applications so devices don’t

get confused by multiple copies of the same data.

3. Finally, there’s the level “exactly once” which guarantees delivery of the message and that clients

receive only one copy of it. This is the most complex process and requires a four-part series of

responses between the broker and the subscribing client to check that it received exactly one

copy of each message.

The Quality of Service feature lets developers set importance levels for different kinds of data so they can

ensure delivery of important data, even in situations with intermittent connectivity. It also enables them to

save bandwidth by not checking the delivery status of unimportant data.

Some of the most popular MQTT broker implementations are Mosquitto, EMQX, and HiveMQ. There are

also many MQTT client libraries so developers can work with it in the language that fits their application

and that they’re most comfortable with. The most popular client libraries are the open source Paho MQTT

libraries, supported by the Eclipse Foundation.

MQTT use cases
Here are some examples of how different kinds of companies and developers use MQTT:

● Consumer IoT - This includes devices designed to automate processes for consumers, such as

smart home devices. Consumer IoT devices use MQTT to communicate and increase efficiency in

whatever they’re designed to do. The broker model lets many devices communicate efficiently for

near real-time actions.

● Industrial IoT - MQTT was initially created for IIoT use in the oil industry, and is still commonly used

in manufacturing. It’s more popular than other network protocols because it allows companies to

send large volumes of data quickly.

● Logistics - MQTT can send data in close to real time, which makes it perfect for monitoring

products as they’re shipped around the world. It can handle intermittent internet connectivity,

which is also important for this use case.

● Mobile Application Development - Many mobile apps use MQTT, including Facebook Messenger.

3 / 7

https://www.eclipse.org/paho/index.php
https://www.eclipse.org/paho/index.php


Mobile apps that include frequent network communication have similar workloads to IoT devices,

and MQTT is a natural fit. It provides apps with continuous connections to receive messages while

using minimal energy and bandwidth.

MQTT benefits
MQTT has a few key benefits for IoT use cases:

● Efficiency - MQTT is designed to send messages using the least amount of data and energy

possible. It reuses connections between devices and a broker for multiple messages, which lets it

use 10 times less bandwidth than HTTP. MQTT is also efficient because the messages it sends are

small files and the publish/subscribe model lets devices receive messages directly from the broker

rather than checking with other devices at set intervals.

● Reliability - MQTT’s publish/subscribe architecture lets the broker store messages until devices

subscribed to a topic connect and receive them. It also lets developers choose Quality of Service

levels to designate certain data as critical, to prioritize the data they most need delivered.

● Flexibility - MQTT gives developers many options they can control, such as Quality of Service

levels and Expiration Intervals. It also allows messages to contain any kind of data, from binary to

ASCII text to anything else. The publish/subscribe architecture also enables faster application

development because developers can simply add brokers to handle new devices or more frequent

messages.

Challenges with using MQTT

MQTT is optimized for specific IoT use cases, and that comes with a few challenges. Developers need to

be aware of its limitations and weigh them with the benefits to decide if MQTT is right for their application.

Latency
MQTT creates some latency by including a broker as a middle step between devices. For use cases that

need extreme real-time results, MQTT might not be the best choice and developers might need a solution

to pass data directly from device to destination.

Architecture complexity
Adding an MQTT broker into an application’s architecture adds another service that developers need to

manage and monitor. In use cases involving large data volume transfers, applications might require many

broker instances, which need to be balanced so the data load is equally assigned.

4 / 7

https://cloud.google.com/blog/products/iot-devices/http-vs-mqtt-a-tale-of-two-iot-protocols


Resource requirements
If a developer is working with very low-powered devices, even MQTT might require too many resources.

It’s designed to be lightweight, but it does offer many features that are more resource intensive than

alternatives optimized for extremely low-powered hardware.

Security
By default, MQTT doesn’t have any security features or encryption. Developers can implement encryption

using the TCP protocol MQTT is built on. Transport Layer Security (TLS) or Secure Sockets Layer (SSL) work

well for encryption, but are another source of complexity for developers to implement and manage.

InfluxDB and MQTT
Many MQTT messages are time series data. Clients collect and publish metrics from sensors on IoT

devices, and other clients subscribe to that data. Many IoT use cases need to analyze and act on that data

very quickly. InfluxDB is built to handle these kinds of workloads and has features that help you use time

series data for analysis and forecasting. Below are a few examples of how some companies use InfluxDB

with MQTT.

InfluxDB MQTT case studies

HiveMQ
HiveMQ is an MQTT broker messaging platform. It helps IoT and IIoT devices send data to the cloud and is

built to simplify and streamline data collection. It has customers in fields such as logistics, transportation,

and Industry 4.0, along with connected IoT products. Sensors generate large amounts of time series data,

and HiveMQ is designed to get that data into the cloud quickly and reliably. It uses InfluxDB as part of an

extension for the Sparkplug MQTT broker. HiveMQ customers collect Sparkplug metrics in InfluxDB to

monitor their implementation. They can create dashboards within InfluxDB to view and analyze data from

devices within their Sparkplug infrastructure.

HighByte
HighByte is an industrial software company that develops solutions to manufacturing problems focused on

data architecture and integration. It created the first DataOps solution designed for the unique needs of

systems at the edge. It works to fill in the gap between operational technology and informational

technology, and to process and add context to industrial data so it’s useful in an Industry 4.0 context.

HighByte uses InfluxDB to store and analyze IIoT sensor data collected with MQTT, so their clients can get

5 / 7

https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/sensor-data-is-time-series-data/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/time-series-analysis-methods/
https://www.influxdata.com/time-series-forecasting-methods/
https://www.influxdata.com/customer/hivemq/
https://www.influxdata.com/what-is-industry-4-0/
https://www.influxdata.com/customer/highbyte/


meaningful information from their data. HighByte also uses Flux in its Overall Equipment Effectiveness

(OEE) calculations, which helps manufacturers optimize their processes.

MOXIE IoT
MOXIE IoT’s Moxie World platform collects, stores, and analyzes IIoT data and creates real-time

visualizations on its mobile app. It’s designed as a tracking solution for assets such as cranes, forklifts,

pallets, and more. The app stores data securely and displays charts and maps which show speed,

direction, hours of usage, and other metrics. This gives industrial companies one source of truth they can

use to monitor operations. Along with the app interface, Moxie World gives its customers access to live

data through an MQTT stream and access to historical data with InfluxDB. It stores data from an MQTT

broker in InfluxDB at regular intervals and uses Flux for queries. MOXIE IoT chose to use InfluxDB for their

solution because it allowed them to store and query historical IoT data efficiently with built-in time series

analysis tools.

6 / 7

https://www.influxdata.com/customer/moxie-iot/


About InfluxData
InfluxData is the creator of InfluxDB, the leading time series platform. More than 1,900 customers use

InfluxDB to collect, store, and analyze all time series data at any scale. Developers can query and analyze

their time-stamped data in real-time to discover, interpret, and share new insights to gain a competitive

edge. InfluxData is a remote-first company with a globally distributed workforce. For more information, visit

www.influxdata.com.

InfluxDB documentation, downloads & guide
Get InfluxDB

Try InfluxDB Cloud for Free

Get documentation

Additional tech papers

Join the InfluxDB community

7 / 7

https://www.influxdata.com/
https://influxdata.com/get-influxdb/
https://www.influxdata.com/products/influxdb-cloud/
https://docs.influxdata.com/
https://www.influxdata.com/_resources/
https://www.influxdata.com/community-showcase/
https://www.influxdata.com/get-influxdb/

