@ influxdata®

Infrastructure
Monitoring Basics

with Telegraf, Grafana
and InfluxDB

Anais Dotis-Georgiou
Developer Advocate, InfluxData

Anais Dotis-Georgiou
Developer Advocate

oD

i

.oy
E T =" ul
LinkedIn

= © ®
2 | © Copyr ight 2024 , InfluxData %’ influxdata

At a glance

2013

San Francisco HQ, 176 FTE’s, 61+ in technical functions

FOUNDED

Where developers build real-time applications
for loT, Analytics and Cloud native services

One platform; one API across Multiple Clouds and On-Prem

DIFFERENCE . .
Ingest, query, story using common tools regardless of architecture

1300+ Customers and 754,000 daily active OSS deployments;
Google , Cisco, SAP, Comcast, Tesla, Siemens, PTC, Honeywell, JP Morgan Chase

OSS FOUNDATION

PLG Driven Usage and Subscription Model

Pay for what you use; Pay how you want. Credit card, cloud provider, annual contract

BUSINESS MODEL

@ influxdata®

Agenda

Let's solve that problem
Monitoring vs Observability

We will deploy open source tools
Let's break down what each area is such as Telegraf, InfluxDB,

and how they relate and differ. Grafana, OpenTelemtry & more to
solve the problem.

T 2 4

1 3
Let's look at a problem Next steps
Problems drive learning. Let's Get your hands on the source code
create a scenario with an and get involved with our
observability problem to solve. community.

N> Py ®
4 | © Copyright 2024, InfluxData %’ |“f|“XdOt0

Monitoring vs Observability

Monitoring vs Observability

O4d

Collects and analyzes metrics,
logs, and events to track system
performance. Uses predefined
rules and thresholds to detect
issues, generating alerts when
breached, helping maintain system
health. This can be applied to
various types of infrastructure,
including physical, digital.

Instruments code and
infrastructure to expose relevant
data, enabling teams to
understand system behavior.
Correlates data from different
sources to diagnose issues and
identify root causes, providing
insights for effective
problem-solving. Traces are good
example.

@ influxdata®

Monitoring + Observability Fields

Network
Monitoring

Source: Routers, switches,
and firewalls

Monitor: Efficient data
transmission, detect
bottlenecks, status of
devices

Server
Monitoring

Source: CPU, memory,
disk, processes

Monitor. CPU usage,
memory consumption, disk
space, active processes

000|],000

Application
Performance
Monitoring

Source: Metrics, logs, and
traces

Monitor: Latency, code
inefficiencies, errors

Cloud
Infrastructure
Monitoring

Source: Kubernetes, VM’s
microservices, services

Monitor: Uptime, cost,
resource allocation

@ influxdata®

Let's look at a problem...

Whisper GPT

dW$S

~N

Whisper GPT Backend API

& %

&lj| &

9 | © Copyright 2024, InfluxData

Product: Whisper GPT

Purpose: Natural language processing and machine
learning techniques to provide users with highly
accurate, context-aware, and personalized responses.

Problem: Unprecedented growth presents a few
challenges, including potential bottlenecks, latency
issues, and the need for seamless scalability to handle
the influx of new users and requests.

Question: How can the Whisper GPT team monitor
and optimize their scaling solution's network,
application, and cloud infrastructure to maintain
optimal performance, reliability, and user experience?

@ influxdata®

Break it down

Network
monitoring

Source: Routers, switches,
and firewalls

Monitor: Efficient data
transmission, detect
bottlenecks, status of
devices

Server monitoring

Source: CPU, memory, disk,
processes, GPU

Monitor. CPU & GPU usage,
memory consumption, disk
space, active processes

437

Application
performance
monitoring

Source: Metrics, logs, and
traces

Monitor: Latency, code
inefficiencies, errors

Cloud
infrastructure
monitoring

Source: Kubernetes, VM’s
microservices, services

Monitor: Uptime, cost,
resource allocation

dWS

@ influxdata®

Let’s solve that problem

Data Action

Data
Storage

Data
Collection

Monitor

influxdata®

'\
@

y

12 | © Copyright 2024, InfluxData

Data Collection

Telegraf is our open source data
collection agent for metics and
events.

With 300+ plugins for ingesting
and outputting data, Telegraf is
one of the most versatile ingest
agents for time series data.

NS Py ®
13 | © Copyright 2024, InfluxData %’ influxdata

Input Plugins

activemq

aerospike

chrony

amgp_consumer

cisco_telemetry_mdt

dmcache

apache

clickhouse

dns_query

filestat

apcupsd

cloud_pubsub

docker

fireboard

aurora

cloud_pubsub_push

docker_log

fluentd

azure_storage_queue

cloudwatch

dovecot

github

bcache

conntrack

ecCs

gnmi

beanstalkd

consul

elasticsearch

graylog

bind

couchbase

ethtool

haproxy

bond

couchdb

eventhub_consumer

hddtemp

burrow

cpu

exec

http

cassandra

dcos

execd

http_listener_v2

ceph

disk

fail2ban

http_response

cgroup

diskio

fibaro

httpjson

14 | © Copyright 2024, InfluxData

disque

file

icinga2

filecount

infiniband

influxdb

'\
@

influxdata®

Input Plugins

influxdb__listener

influxdb_v2_listener

kapacitor

mcrouter

net_response

intel _rdt

kernel

mem

nginx

internal

kernel_vmstat

memcached

nginx_plus

interrupts

kibana

mMesosS

nginx_plus_api

ipmi_sensor

kinesis_consumer

minecraft

nginx_sts

ipset

kube_inventory

modbus

nginx_upstream_check

iptables

kubernetes

mongodb

nginx_vts

ipVvs

lanz

monit

nsd

jenkins

leofs

mqtt_consumer

nsq

jolokia

linux_sysctl_fs

multifile

nsg_consumer

jolokiaZ2

logparser

mysq|

nstat

jti_openconfig_telemetr
Yy

logstash

nats

ntpg

lustre2

nats_consumer

nvidia_smi

mailchimp

neptune_apex

opcua

kafka_consumer

marklogic

net

openldap

kafka_consumer_legacy

15 | © Copyright 2024, InfluxData

@ influxdata®

Input Plugins

opentelemetry
openntpd
opensmtpd
openweathermap
passenger

pf

pgbouncer

phpfpm

ping

postfix

postgresq|
postgresql_extensible
powerdns
powerdns_recursor
processes

procstat

prometheus

Proxmox

puppetagent

rabbitmq@
raindrops
ras
redfish
redis
rethinkdb
riak
salesforce
Sensors
sflow
smart
snmp

snmp_legacy
snmp_trap
socket_listener
solr

sqlserver
stackdriver
statsd

suricata

swap
Synproxy
syslog

sysstat

system
systemd_units
tail

tcp_listener
teamspeak
temp

tengine
tomcat

trig
twemproxy
udp_listener
unbound
uwsgi

varnish
vsphere
webhooks
win_eventlog
win_perf_counters

win_services

wireguard
wireless
x509_cert
zfs

zipkin

Zookeeper

@ influxdata®

Telegraf Architecture

Data Sources

Data Systems

-
\ S ™
@ telegraf
Input Process Aggregate Output
CPU
InfluxDB
Mem
Disk
- mean .
Modbus . File
- transform - min,max
OPC UA - decorate - count
. - filter - variance
/metrics - stddev Kafka
Kafka
MQTT
CloudWatch
CloudWatch
_

InfluxDB

Purpose-Built Time Series Database

Collect
Transform

Downsample

@ influxdata®

Windows Service

Telegraf Setup

kubernetes

docker-compose

telegraf --debug —--config telegraf.conf

 E— telegraf,conf — telegraf --test —--config telegraf.conf » systemctl
telegraf --once —--config telegraf.conf
docker Create Test Deploy
Config

Download &
Install

NS Py ®
18 | © Copyright 2024, InfluxData %’ influxdata

Telegraf sidecar

~ Insights 3 Settings

(-) Issues ‘) Pullrequests (») Actions [[] Projects [(1) Security

¥ main ~ £ 1branch © 0tags Go to file Add file ~ <> Code ~

v‘ Jayclifford345 added correct env vars to deployment and tags 080b372 on Mar 11, 2022 O 4 con

HelmConfig
Prod
Sidecar
.gitignore

README.md

README.md

Monitoring Kubernetes with Telegraf and InfluxDB

This tutorial will show you how you can deply Telegraf using two methods to monitor your Kubernetes Cluser:

1. Telegraf Helm + Prometheus metrics scraping

2. Telegraf Sidecar for monitoring indurvidual pods + applications

Assumption: This tutorial will take you through the process of setting up your own local Kubernetes cluster
with Minikube. Users with there own clusters can skip these steps and move straight into Telegraf
configurations.

Prerequisites https://github.com/InfluxCommunity/inf

(Optional) Install either : luxdb_minikube_tutorial

Install

Install or create a

@ influxdata®

https://github.com/InfluxCommunity/influxdb_minikube_tutorial
https://github.com/InfluxCommunity/influxdb_minikube_tutorial

Telegraf Config

[global_tags]

dc = "us-east-1" # will tag all metrics with dc=us-east-1
rack = "1a"
user = "SUSER"
[agent]
interval = "10s”

round_interval = true

metric_batch_size = 1000
metric_buffer_limit = 10000
collection_jitter = "0s”

flush_interval = "10s"
flush_jitter = "@s"
precision = ""

debug = false

quiet = false

logtarget = "file"

logfile = ""
logfile_rotation_interval = "@d"
logfile_rotation_max_size = "OMB"
logfile_rotation_max_archives = 5

H H H H H H

hostname =
omit_hostname = false

@ influxdata®

Input plugin configs

[[inputs.snmp]]

agents =["udp://127.0.0.1:161"].

timeout = "15s"
version = 2
community = "SNMP"
retries =1

[[inputs.snmp.field]]
oid =
"SNMPv2-MIB::sysUpTime.O"
name = "uptime"
conversion = "float(2)"

[[inputs.snmp.field]]
oid =
"SNMPv2-MIB::sysName.O"
name = "source"
is_tag = true

[[inputs.cpu]]
percpu = true
totalcpu = true
collect_cpu_time = false
report_active = false

[[inputs.disk]]
ignore_fs = ["tmpfs’,
"devtmpfs", "devfs",

"is09660", "overlay", "aufs",
"squashfs"]

[inputs.diskio]]
[inputs.mem]]
[inputs.processes]]
[inputs.swap]]
[inputs.system]]
[nvidia-smi]]

5

Q

437

[[inputs.opentelemetry]]
service_address =
"0.0.0.0:4317"

timeout = "H5s"

metrics_schema =
"prometheus-v2"

tls_cert =
"/etc/telegraf/cert.pem"

tls_key =
"/etc/telegraf/key.pem"

[[inputs.cloudwatch_metric

_streams]]

service_address =":443"

[[inputs.cloudwatch]]
region = "us-east-1"

adWws

@ influxdata®

Output Plugins

amon

amgp
application_insights
azure_monitor
cloud_pubsub
cloudwatch
cratedb
datadog
discard
dynatrace
elasticsearch
exec

execd

file

graphite

22 | © Copyright 2024, InfluxData

graylog

prometheus_client

health

riemann

http

riemann_legacy

influxdb

socket_writer

influxdb_v2

stackdriver

instrumental

sumologic

kafka

syslog

kinesis

timestream

librato

warp10

logzio

wavefront

mqtt

nats

newrelic

yandex_cloud_monitorin
g

nsq

opentsdb

@ influxdata®

23

Telegraf Config

[[outputs.influxdb_v2]]

urls = ["http://127.0.0.1:8086"]

Token for authentication.
token = ""

Organization is the name of the organization you wish to write to.
organization = ""

Destination bucket to write into.
bucket = ""

The value of this tag will be used to determine the bucket. If this
tag is not set the 'bucket' option is used as the default.
bucket_tag = ""

If true, the bucket tag will not be added to the metric.
exclude_bucket_tag = false

Timeout for HTTP messages.
timeout = "5s”

Additional HTTP headers
http_headers = {"X-Special-Header" = "Special-Value"}

HTTP Proxy override, if unset values the standard proxy environment

variables are consulted to determine which proxy, if any, should be used.

http_proxy = "http://corporate.proxy:3128"

| © Copyright 2024, InfluxData

dWsS

@ influxdata®

Data Action

Data
Storage

Data
Collection

influxdata®

'\
@

24 | © Copyright 2024, InfluxData

Data Storage

APACHE

ARROW InfluxDB is a database purpose-built
for handling time series data at

massive scale for real-time analytics.

‘ “ Developers can ingest, store, and

., analyze all types of time series data;

metrics, events, traces in a single
olatform. Designed to handle
nigh-speed, high-volume, and
nigh-cardinality data.

@ influxdata®

InfluxDB 3.0

APACHE

ARROW === Schema on write

Write and query millions of rows
per second

)4‘ Single datastore for all time series

data (metrics, logs, and traces)

SQL, InfluxQL Support

@ influxdata®

InfluxDB Platform

@ influxdb 3.0

c® o} Q
Data Data Data Storage + Data Visualization
Sources Collection & Transformation z & Analysis
—> —> N &
All time-stamped Multiple data Purpose-built time D Connect to critical
data ingest methods series database g systems and tools
Z
Metrics Telegraf Collect ok Machine learning
Sensors Client libraries Store Analytics tools
Events & more SQL queries Bl tools
Devices & more
& more

@ influxdata®

Concepts: Data Model

Bucket

* All InfluxDB data is stored in a bucket. A bucket combines the concept of a database
and a retention period (the duration of time that each data point persists).

Measurement
* A name to a group of data at a high level (Table)

Tag set
* A set of key-value pairs to group data at a low level (values are strings)

Field set
* A set of key-value pairs to represent data (values are numerical & strings)

Timestamp
* Time of the data with nanosecond precision

Series
* A unique combination of measure+tags

@ influxdata®

Data Storage

» Writing points to InfluxDB uses Line Protocol, which takes the
following format:

<measurement>[, <tag-key>=<tag-value>]
[<field-key>=<field-value>]
[unix-nano-timestamp]

server , hostname=serverd?2,us_west=az cpu=24.5,mem=12 .4 123456/890000000

Reference: https://docs.influxdata.com/influxdb/cloud/reference/syntax/line-protocol/

NS Py ®
29 | © Copyright 2024, InfluxData %’ influxdata

Schema Best Practises

Design for performance

* Avoid Wide Schemas
 Avoid Sparse Schemas
* Homogeneous

Design for query simplicity

 Keep simple
* Avoid Special characters

@ influxdata®

Homogenous

-

o

~

-

Measurement 1 (network)

)

-
AL

dWS

o

Measurement 2 (server)

Measurement 3 (application)

-~

Measurement 4 (cloud)

_

“homogenous,”
meaning each row
should have the
same tag and field

keys.

@ influxdata®

Openlelemetry - Application

4)

% D [' [“OpenTelemetry is an open-source

. project for collecting, processing, and
\ exporting observability data like

>) “ traces, metrics, and logs from

software applications, simplifying

’ monitoring and performance
optimization across languages and

platforms.”

@ influxdata®

Openlelemetry - Schema

Measurement M t
Measurement easuremen

latency_ms_histogram |
spans ogs

Q
Q Q
Fields

Fields

SoUnt Fields

. attributes
delta_10 attributes

. . name
delta_100 client-uuid

delta_1000 duration_nano ~ Tag Keys

delta_10000000 . :
end_time_unix_nano ~ span_id

delta_25 host.name

delta_250) trace_id
1p
delta_2500)
kind

+ Load more
name

Tag Keys opencensus.exporterversion

http.method otel.status_code

parent_span_id
http.status_code

service.name
operation

. Tag Keys
service.name

. span_id
span.kind

status.code trace_id

@ influxdata®

Hybrid InfluxDB Solutions

global ‘ S, global ‘ E, Cloud

-
]
LﬁJ L@ﬁJ AW& = \ j Edge
rawdata task downsampled
L. N\
Edge Data Replication

_ @ influxdb .

@ influxdata®

influxdb’

'\
o

)

Data Action

Data
Storage

Data
Collection

®

influxdata

'\
<

36 | © Copyright 2024, InfluxData

Data Action

Grafana

37 | © Copyright 2024, InfluxData

Grafana is an open-source data
visualization and monitoring
platform.

Allows users to create interactive
dashboards for real-time data
analysis and tracking of metrics
across various data sources.

@ influxdata®

Grafana Flavours

£ =)\

Grafana Grafana

Cloud Open Source

FlightSQL, InfluxQL

@ influxdata®

Grafana Flow

FlightSQL

FlightSQL
Type: FlightSQL
(FlightSQL)

ti4 Settings

SELECT usage_idle, time, cpu FROM iox.cpu WHERE $__timeRange(time) order by

Provisioned data source

®

This data source was added by config and cannot be modified using the Ul. Please contact your server admin to update this data source

© Alerting supported

Name ©® Fligl 5 Default [)

FlightSQL Connection

3 v &3

Host:Port eu-central-1-1.aws.cloud2.influxdata.com:443

Format As Table v Builder View ‘ ‘ Show Query Help

Auth Type

+ Add query & Query history @® Inspector
Require TLS / SSL

MetaData

usage_idle time
Key bucket-name telegraf

95.7 2023-05-02 14:02:57

Explore

93.9 2023-05-02 14:02:57

Datasource Explore

@ influxdata®

Grafana Official InfluxDB v3 Data Source

<) InfluxDB V3

Type: InfluxDB

4 Settings & Permissions

@ Insights B Cache

Name @ InfluxDB V3 Default

Query language
5

InfluxQL

The Influ

SQL
Native SQL language. Supported in InfluxDB 3.0

Flux

o

rted in InfluxDB 2.x

@ influxdata®

Grafana Flow

Stacked lines

13:15 13:20 13:25 13:30 13:35 13:40 13:45

== usage_idle cpu-total == ysage_idle cpu0 == usage_idle cpul == usage_idle cpu2 usage_idle cpu3 == usage_idle cpu4 == usage_idle cpu5

Visualize

@ influxdata®

Useful Queries

SQL Command

SELECT
$ dateBin(time) ,
avg (usage user) AS 'usage user',
avg (usage system) AS 'usage system',
avg (usage 1dle) AS 'usage idle'
FROM cpu
WHERE cpu='cpu-total' AND §$ timeRange (time)
GROUP BY 1
ORDER BY time

SELECT

selector last(total, time)['time'] AS time,

selector last(total, time) ['value'] / 1024 / 1024 / 1024 As total
FROM mem

WHERE host='S$S{linux host}' AND $ timeRange (time)
ORDER BY time

CPU Usage

100
75
50
25

0
14:10 14:15 14:20

e=» ysage_user == ysage_system

== usage_idle

Total Memory

Example Dashboar

linux_host b8483940256b

Host List System Uptime System Load Total Memory Total Threads Memory Usage

host

b8483940256k

Disk Usage System Load
100
0.3
80 75
60 50

40 25

20 5 ‘p

14:25 14:30 14:35 | g
14:25 14:30 == Uusage_user == usage_system 14:25 14:30 14:25 14:30

0

== average used_percent == usage_idle == |0ad] == |0adS == [0ad15 == average used_percent

DisklO Network Processes Swap

100 100 1200000000

1000000000
1000000000

500000000
800000000

600000000

400000000
-500000000

200000000
-1000000000

O @ o0 o0 @ e ooe e me o o e o o0 o 0

14:25 14:30 14:25 14:30 14:35 14:25 14:30 14:35 14:25

== read_bytes == write_bytes == read_bytes == bytes_sent == running == blocked == jdle == unknown == total == ysed

@ influxdata®

Alerting

FlightSQL v ® © now-10mtonow v Max data points © 2C Make this the alert condition

SELECT
$__dateBin(time) ,
(used_percent) AS
)M mem
E $_ timeRange(time

3 v =

Format As Table v Builder View H Show Query Help ..
| ..

14:34:00 14:35:00 14:36:00 14:37:00 14:38:00 14:39:00 14:40:00 14:41:00 14:42:00 14:43:00
== average used_percent

Reduce ¢ 0] & Threshold

Function Last \ v IS ABOVE v

Mode Strict

DagerDuty

10.56733 Se 1 Firing

Make this the alert condition v Alert condition 1 firing, O normal

Rules Endpoints

@ influxdata®

I=

&k’
Grafana
OO0 Superset

sAPACHE

influxdb’

'\
o

)

Data Action

Data

Data
Collection

Storage

influxdata®

'\
@

45 | © Copyright 2024, InfluxData

Observability POC/Demo

OpenTelemetry with InfluxDB

This demo provides a practical example of integrating InfluxDB, a
high-performance time series database, with OpenTelemetry, an open-source
observability framework, to achieve real-time monitoring and tracing of a

distributed application. o ®
€ influxdata

'\ spans
‘.r

Hot R.O.D otelcol-influxdb Jaeger-query Jaeger-Ul

https://github.com/influxdata/influxd

b-observability

e Aims to provide a standard for converting OTEL -> InfluxDB Schema
and InfluxDB Schema -> OTEL

e Parts of otelcol-influxdb can be replaced with Telegraf

@ influxdata®

'@ HOtROD - Rides On Demand X
€ 3 C O locaihost 8080 an v Qs @EMINDY !

Your web client’s it 3333

Hot R.O.D.

M Rides On Demand &

Cihick on customer name above 10 order a car.

HotROD T7168521C armiving in 2min [req: 3333-3, latency, 783ms] [ind trace]
HotROD T773074C arriving in 2min [req: 3333-2, latency: 656ms] [find trace)
HotROD T740881C ariving in 2min [req: 3333-1, latency: 736ms] [ind trace]

ea @ ®
48 | © Copyright 2024, InfluxData %! influxdata

@ HOWROD - Rides On Demand X | @ Data Explorer | Juy-10x | Infhs X

Workshops J Wvarsit ; 5 5 S ™ Schema Best Prac

Home Dashboards

120011cb715fefbd

Services Duration Error Rate

service.name <

03:05:24 077 A s 03:20:05.887 06:25:30.68" 04:52:13.844 08:53:58.453 08:54:02.47% 08:54:05.569

Ta L
10y T3

Traces Relationships
Trace ID Trace name Start time Duration

frontend: HTTP GET 2023-05-11 14:31:09 646 ms

frontend: HTTP GET / 2023-05-11 14:28:25

frontend: HTTP GET 2023-04-27 05:34:50

frontend: HTTP GET /... 2023-04-27 03:43:52

@ influxdata®

@ HOROD - Rides OnDemand x| @ Data Explorer | Jay-10x | nfiu

‘e A
do» #

Home Dashboards {
57 . 15:26:34.364 (l 2 1 ® 4

15:26:34 305 15:26:34 324

15:26:34.168 15:26:34.208 15263420

- <308 = 0% S50%+
Service Latency Histogram

2

Traces Relationships

Duration

Trace 1D Trace name Start time

frontend: HTTP GET | 2023-05-1115:26:33 776 ms

Self time / Trace duratior

Trace
frontend: HTTP GET /dispatch

674.48ms

@ influxdata®

dWS

Whisper GPT Solution

Telegraf: Utilize Telegraf as our collection backbone.
Deployed on all three servers and cloud infrastructure.
Collects data from OTEL, Prometheus, CloudWatch,
and raw server-based metrics.

InfluxDB: InfluxDB 3.0 is setup with four repositories

called buckets representing each of our datasources.

WhisperGPT Backend API

InfluxDB allows us to store metrics, logs, and traces in [
one datastore.

Grafana: Grafana acts as the observability hub. We @
use both the FlightSQL and the Jaeger datasource to
query our data from InfluxDB 3.0.

51 | © Copyright 2024, InfluxData

Q)

a@iﬁ

@ influxdata®

Next Steps

Try it yourself - Quick Starts

main ~ £ 1 branc © 0 tag: Go to file Add file ~ <> Code ~

M\ Jayclifford345 Update README.md 18dob6c now 10

4
7

emergency-generator
plugins
system-monitoring
vision-ai-pipeline
.gitignore

README.md

README.md

InfluxDB 3.0 Quick Starts

Welcome to the "InfluxDB IOx Quick Starts" repository! This repository is dedicated to providing easy to follow
tutorials on how to integrate InfluxDB 10x with Grafana and Superset. InfluxDB 10x is a powerful time-series
database solution and when paired with Grafana or Superset, both popular open-source visualization platform, you
can create beautiful and informative dashboards to better visualize and understand your data.

https://github.com/InfluxCommuni

This repository will cover the basics of setting up InfluxDB I0x and Grafana or Superset, how to connect them and .
how to query data from InfluxDB IOx. Whether you are new to InfluxDB 10x or an experienced user, this repository ty/InfluxDB-3-Quick-Starts
is designed to help you get up and running with InfluxDB I0x, Grafana and Superset quickly and easily.

@ influxdata®

https://github.com/InfluxCommunity/InfluxDB-3-Quick-Starts
https://github.com/InfluxCommunity/InfluxDB-3-Quick-Starts

Try it yourself - OTEL

OpenTelemetry & InfluxDB

Welcome ubuntu $

Welcome to the InfluxDB OpenTelemetry Demo! In this demo, you will
learn about OpenTelemetry and how it can be integrated with InfluxDB

to collect, process, and store metrics, logs and traces.

What is OpenTelemetry?

OpenTelemetry is an observability framework for cloud-native software,
designed to provide a single set of APIs for collecting and processing
telemetry data such as metrics, logs, and traces. OpenTelemetry aims to
simplify instrumentation by providing a consistent and vendor-neutral
approach, allowing developers to build and deploy applications without
being locked into a specific observability platform. It is a project within
the Cloud Native Computing Foundation (CNCF) and is the result of a

merger between OpenTracing and OpenCensus.

Architecture Overview

Here is a high level overview of the architecture

HotROD otelcokinfluxdd Jaeger-query

@ influxdata

https://github.com/InfluxCommunity

/influxdb—-observability

’\
@

influxdata®

https://github.com/InfluxCommunity/influxdb-observability
https://github.com/InfluxCommunity/influxdb-observability

Getting started

Sign up

Influxdata.com

Via cloud marketplace

Learn
v Self-service content

v Documentation
Y| InfluxDB University

v Community

55 | © Copyright 2024, InfluxData

__ Get InfluxDB

il \icrosoft

AN G Ml Azure

N’ GoogleCloud

https://influxdbu.com/

https://influxcommunityv.slack.com/

@ influxdata®

https://influxdbu.com/
https://influxcommunity.slack.com/

THANK YOU

Any Questions?

@ influxdata®

@ influxdata®

