

# Infrastructure Monitoring Basics with Telegraf, Grafana and InfluxDB

Anais Dotis-Georgiou Developer Advocate, InfluxData



#### Anais Dotis-Georgiou Developer Advocate







## At a glance

| FOUNDED        | 2013<br>San Francisco HQ, 176 FTE's, 61+ in technical                               |
|----------------|-------------------------------------------------------------------------------------|
| FOCUS          | Where developers build real-time ap<br>for IoT, Analytics and Cloud native services |
| DIFFERENCE     | One platform; one API across Multip<br>Ingest, query, story using common tools rega |
| OSS FOUNDATION | 1300+ Customers and 754,000 daily<br>Google , Cisco, SAP, Comcast, Tesla, Siemer    |
| BUSINESS MODEL | PLG Driven Usage and Subscription<br>Pay for what you use; Pay how you want. Cre    |

- functions
- pplications
- ole Clouds and On-Prem ardless of architecture
- / active OSS deployments;
- ns, PTC, Honeywell, JP Morgan Chase
- Model edit card, cloud provider, annual contract



## Agenda



We will deploy open source tools Grafana, OpenTelemtry & more to

4

#### Next steps

Get your hands on the source code and get involved with our community.



# Monitoring vs Observability

## Monitoring vs Observability



Collects and analyzes **metrics**, **logs, and events** to track system performance. Uses predefined rules and thresholds to detect issues, generating alerts when breached, helping maintain system health. This can be applied to various types of infrastructure, including **physical**, **digital**.



Instruments code and infrastructure to expose relevant data, enabling teams to **understand system behavior**. Correlates data from different sources to diagnose issues and **identify root causes**, providing insights for effective problem-solving. **Traces** are good example.

6 | © Copyright 2024, InfluxData



## Monitoring + Observability Fields

#### Network Monitoring

**Source**: Routers, switches, and firewalls

**Monitor**: Efficient data transmission, detect bottlenecks, status of devices

#### Server Monitoring

**Source**: CPU, memory, disk, processes

**Monitor**: CPU usage, memory consumption, disk space, active processes Application Performance Monitoring

**Source**: Metrics, logs, and traces

**Monitor**: Latency, code inefficiencies, errors







#### Cloud Infrastructure Monitoring

**Source**: Kubernetes, VM's microservices, services

**Monitor**: Uptime, cost, resource allocation





## Let's look at a problem...

## Whisper GPT



**Product:** Whisper GPT

**Purpose:** Natural language processing and machine learning techniques to provide users with highly accurate, context-aware, and personalized responses.

**Problem:** Unprecedented growth presents a few challenges, including potential bottlenecks, latency issues, and the need for seamless scalability to handle the influx of new users and requests.

**Question:** How can the Whisper GPT team monitor and optimize their scaling solution's network, application, and cloud infrastructure to maintain optimal performance, reliability, and user experience?



### Break it down

Network monitoring

**Source**: Routers, switches, and firewalls

Monitor: Efficient data transmission, detect bottlenecks, status of devices

#### **Server monitoring**

**Source**: CPU, memory, disk, processes, GPU

Monitor: CPU & GPU usage, **memory consumption**, disk space, active processes



traces

Monitor: Latency, code inefficiencies, errors







#### Application performance monitoring

Source: Metrics, logs, and



Source: Kubernetes, VM's microservices, services

Monitor: Uptime, cost, resource allocation





## Let's solve that problem





**Data Action** 



#### Data Collection



events.

With 300+ plugins for ingesting and outputting data, Telegraf is one of the most versatile ingest agents for time series data.

#### **Telegraf is our open source data** collection agent for metics and



## Input Plugins

| activemq            |
|---------------------|
| aerospike           |
| amqp_consumer       |
| apache              |
| apcupsd             |
| aurora              |
| azure_storage_queue |
| bcache              |
| beanstalkd          |
| bind                |
| bond                |
| burrow              |
| cassandra           |
| ceph                |
| cgroup              |

| chrony              |
|---------------------|
| cisco_telemetry_mdt |
| clickhouse          |
| cloud_pubsub        |
| cloud_pubsub_push   |
| cloudwatch          |
| conntrack           |
| consul              |
| couchbase           |
| couchdb             |
| cpu                 |
| dcos                |
| disk                |
| diskio              |
| disque              |

| dmcache           |
|-------------------|
| dns_query         |
| docker            |
| docker_log        |
| dovecot           |
| ecs               |
| elasticsearch     |
| ethtool           |
| eventhub_consumer |
| exec              |
| execd             |
| fail2ban          |
| fibaro            |
| file              |
| filecount         |

| filestat         |
|------------------|
| fireboard        |
| fluentd          |
| github           |
| gnmi             |
| graylog          |
| haproxy          |
| hddtemp          |
| http             |
| http_listener_v2 |
| http_response    |
| httpjson         |
| icinga2          |
| infiniband       |
| influxdb         |
|                  |



## Input Plugins

| influxdb_listener       |
|-------------------------|
| influxdb_v2_listener    |
| intel_rdt               |
| internal                |
| interrupts              |
| ipmi_sensor             |
| ipset                   |
| iptables                |
| ipvs                    |
| jenkins                 |
| jolokia                 |
| jolokia2                |
| jti_openconfig_telemetr |
| У                       |
| kafka_consumer          |
| kafka_consumer_legacy   |

| kapacitor        |
|------------------|
| kernel           |
| kernel_vmstat    |
| kibana           |
| kinesis_consumer |
| kube_inventory   |
| kubernetes       |
| lanz             |
| leofs            |
| linux_sysctl_fs  |
| logparser        |
| logstash         |
| lustre2          |
| mailchimp        |
| marklogic        |

| mcrouter      | net_response         |
|---------------|----------------------|
| mem           | nginx                |
| memcached     | nginx_plus           |
| mesos         | nginx_plus_api       |
| minecraft     | nginx_sts            |
| modbus        | nginx_upstream_check |
| mongodb       | nginx_vts            |
| monit         | nsd                  |
| mqtt_consumer | nsq                  |
| multifile     | nsq_consumer         |
| mysql         | nstat                |
| nats          | ntpq                 |
| nats_consumer | nvidia_smi           |
| neptune_apex  | opcua                |
| net           | openIdap             |



## Input Plugins

| opentelemetry         |  |
|-----------------------|--|
| openntpd              |  |
| opensmtpd             |  |
| openweathermap        |  |
| passenger             |  |
| pf                    |  |
| pgbouncer             |  |
| phpfpm                |  |
| ping                  |  |
| postfix               |  |
| postgresql            |  |
| postgresql_extensible |  |
| powerdns              |  |
| powerdns_recursor     |  |
| processes             |  |
| procstat              |  |

| prometheus  |
|-------------|
| proxmox     |
| puppetagent |
| rabbitmq    |
| raindrops   |
| ras         |
| redfish     |
| redis       |
| rethinkdb   |
| riak        |
| salesforce  |
| sensors     |
| sflow       |
| smart       |
| snmp        |
|             |

| snmp_legacy     |  |
|-----------------|--|
| snmp_trap       |  |
| socket_listener |  |
| solr            |  |
| sqlserver       |  |
| stackdriver     |  |
| statsd          |  |
| suricata        |  |
| swap            |  |
| synproxy        |  |
| syslog          |  |
| sysstat         |  |
| system          |  |
| systemd_units   |  |
| tail            |  |

| tcp_listener      |  |
|-------------------|--|
| teamspeak         |  |
| temp              |  |
| tengine           |  |
| tomcat            |  |
| trig              |  |
| twemproxy         |  |
| udp_listener      |  |
| unbound           |  |
| uwsgi             |  |
| varnish           |  |
| vsphere           |  |
| webhooks          |  |
| win_eventlog      |  |
| win_perf_counters |  |

| win_services |
|--------------|
| wireguard    |
| wireless     |
| x509_cert    |
| zfs          |
| zipkin       |
| zookeeper    |
|              |



### Telegraf Architecture









#### Telegraf sidecar

| 🖟 Influx( | Community                  | /            | _mi      | nikube_tutorial (Public                                                     |                       |                                                                           |                                                                  |             |
|-----------|----------------------------|--------------|----------|-----------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|-------------|
| <> Code   | <ol> <li>Issues</li> </ol> | រ៉ា Pull req | uests    | 🕑 Actions 	 🖽 Project                                                       | s 🕮                   | Wiki 🛈 Security 🗠 Insights                                                | 鎔 Settings                                                       |             |
|           |                            |              | ۍ<br>لا  | main 🚽 🕻 1 branch 🛇                                                         | <b>0</b> tags         |                                                                           | Go to file Add file -                                            | <> Code -   |
|           |                            |              | <b>*</b> | Jayclifford345 added corre                                                  | ct env vai            | rs to deployment and tags                                                 | 080b372 on Mar 11, 2022                                          | 🕑 4 commits |
|           |                            |              |          | HelmConfig                                                                  |                       | fixed min yaml config                                                     |                                                                  | last year   |
|           |                            |              |          | Prod                                                                        |                       | added correct env vars to deployment                                      | t and tags                                                       | last year   |
|           |                            |              |          | Sidecar                                                                     |                       | added correct env vars to deployment                                      | t and tags                                                       | last year   |
|           |                            |              | ß        | .gitignore                                                                  |                       | initial commit                                                            |                                                                  | last year   |
|           |                            |              | Ľ        | README.md                                                                   |                       | initial commit                                                            |                                                                  | last year   |
|           |                            |              | ∷≡       | README.md                                                                   |                       |                                                                           |                                                                  | Ø           |
|           |                            |              |          | Monitoring Ku                                                               | ıberı                 | netes with Telegra                                                        | f and InfluxDB                                                   |             |
|           |                            |              | T        | his tutorial will show you h                                                | low you o             | can deply Telegraf using two method                                       | ds to monitor your Kubernetes C                                  | luser:      |
|           |                            |              |          | 1. Telegraf Helm + Prome                                                    | theus m               | etrics scraping                                                           |                                                                  |             |
|           |                            |              |          | 2. Telegraf Sidecar for mo                                                  | onitoring             | indurvidual pods + applications                                           |                                                                  |             |
|           |                            |              | ہر<br>v  | Assumption: This tutorial w<br>with Minikube. Users with<br>configurations. | will take<br>there ov | you through the process of setting<br>wn clusters can skip these steps ar | g up your own local Kubernetes<br>nd move straight into Telegraf | cluster     |
|           |                            |              | F        | Prerequisites                                                               |                       |                                                                           |                                                                  |             |
|           |                            |              |          | (Optional) Install either                                                   | Minikub               | e or Kind.                                                                |                                                                  |             |
|           |                            |              |          | Install helm                                                                |                       |                                                                           |                                                                  |             |
|           |                            |              |          | Install InfluxDB OSS or                                                     | create a              | free cloud account                                                        |                                                                  |             |



https://github.com/InfluxCommunity/inf
luxdb minikube tutorial



### Telegraf Config

```
[global_tags]
 # dc = "us-east-1" # will tag all metrics with dc=us-east-1
 # rack = "1a"
 # user = "$USER"
[agent]
 interval = "10s"
 round_interval = true
 metric_batch_size = 1000
 metric_buffer_limit = 10000
 collection_jitter = "0s"
 flush_interval = "10s"
 flush_jitter = "0s"
 precision = ""
 # debug = false
 # quiet = false
 # logtarget = "file"
 # logfile = ""
 # logfile_rotation_interval = "0d"
 # logfile_rotation_max_size = "0MB"
 # logfile_rotation_max_archives = 5
 hostname = ""
 omit_hostname = false
```



## Input plugin configs

[[inputs.snmp]] agents = ["udp://127.0.0.1:161"]. timeout = "15s" version = 2community = "SNMP" retries = 1

```
[[inputs.snmp.field]]
  oid =
"SNMPv2-MIB::sysUpTime.0"
  name = "uptime"
  conversion = "float(2)"
```

[[inputs.snmp.field]] oid = "SNMPv2-MIB::sysName.0" name = "source" is\_tag = true



[[inputs.cpu]] percpu = true totalcpu = true collect\_cpu\_time = false report\_active = false

[[inputs.disk]] ignore\_fs = ["tmpfs", "devtmpfs", "devfs", "iso9660", "overlay", "aufs", "squashfs"]

[[inputs.diskio]] [[inputs.mem]] [[inputs.processes]] [[inputs.swap]] [[inputs.system]] [[nvidia-smi]]



[[inputs.opentelemetry]] service\_address = "0.0.0:4317"

timeout = "5s"

metrics\_schema = "prometheus-v2"

tls\_cert = "/etc/telegraf/cert.pem" tls\_key = "/etc/telegraf/key.pem"



[[inputs.cloudwatch\_metric \_streams]]

service\_address = ":443"

[[inputs.cloudwatch]] region = "us-east-1"





## **Output Plugins**

#### amon

amqp

application\_insights

azure\_monitor

cloud\_pubsub

cloudwatch

cratedb

datadog

discard

dynatrace

elasticsearch

exec

execd

file

graphite

| graylog      |
|--------------|
| health       |
| http         |
| influxdb     |
| influxdb_v2  |
| instrumental |
| kafka        |
| kinesis      |
| librato      |
| logzio       |
| mqtt         |
| nats         |
| newrelic     |
| nsq          |
| opentsdb     |

#### prometheus\_client

riemann

riemann\_legacy

socket\_writer

stackdriver

sumologic

syslog

timestream

warp10

wavefront

yandex\_cloud\_monitorin

g



### Telegraf Config

```
[[outputs.influxdb_v2]]
 urls = ["http://127.0.0.1:8086"]
 ## Token for authentication.
 token = ""
 ## Organization is the name of the organization you wish to write to.
 organization = ""
 ## Destination bucket to write into.
 bucket = ""
 ## The value of this tag will be used to determine the bucket. If this
 ## tag is not set the 'bucket' option is used as the default.
 # bucket_tag = ""
 ## If true, the bucket tag will not be added to the metric.
 # exclude_bucket_tag = false
 ## Timeout for HTTP messages.
 # timeout = "5s"
 ## Additional HTTP headers
 # http_headers = {"X-Special-Header" = "Special-Value"}
 ## HTTP Proxy override, if unset values the standard proxy environment
 ## variables are consulted to determine which proxy, if any, should be used.
 # http_proxy = "http://corporate.proxy:3128"
```













2



**Data Action** 



### Data Storage









InfluxDB is a database purpose-built for handling time series data at massive scale for real-time analytics.

Developers can ingest, store, and analyze all types of time series data; metrics, events, traces in a single platform. Designed to handle high-speed, high-volume, and high-cardinality data.



## InfluxDB 3.0











Write and query millions of rows per second



SQL, InfluxQL Support

Schema on write

Single datastore for all time series data (metrics, logs, and traces)









## **Concepts: Data Model**

#### **Bucket**

• All InfluxDB data is stored in a bucket. A bucket combines the concept of a database and a retention period (the duration of time that each data point persists).

#### Measurement

• A name to a group of data at a high level (Table)

#### Tag set

• A set of key-value pairs to group data at a low level (values are strings)

#### **Field set**

• A set of key-value pairs to represent data (values are numerical & strings)

#### Timestamp

• Time of the data with nanosecond precision

#### **Series**

• A unique combination of measure+tags



## Data Storage

 Writing points to InfluxDB uses Line Protocol, which takes the following format:

<measurement>[,<tag-key>=<tag-value>] [<field-key>=<field-value>] [unix-nano-timestamp]

|  | Measurement | Tag Set                       |        |
|--|-------------|-------------------------------|--------|
|  | server      | ,hostname=server02,us_west=az | cpu=24 |

Reference: https://docs.influxdata.com/influxdb/cloud/reference/syntax/line-protocol/





### Schema Best Practises

#### **Design for performance**

- Avoid Wide Schemas
- Avoid Sparse Schemas

Homogeneous

#### **Design for query simplicity**

- Keep simple
- Avoid Special characters



### Homogenous



"homogenous," meaning each row should have the same tag and field keys.



### **OpenTelemetry - Application**



"OpenTelemetry is an open-source project for collecting, processing, and exporting observability data like traces, metrics, and logs from software applications, simplifying monitoring and performance optimization across languages and platforms."



### **OpenTelemetry - Schema**



| Measurement                      |
|----------------------------------|
| spans                            |
|                                  |
| Q Search fields and tag keys     |
| - Fields 👔                       |
| attributes                       |
| client-uuid                      |
| duration_nano                    |
| end_time_unix_nano               |
| host.name                        |
| ip                               |
| kind                             |
| name                             |
| opencensus.exporterversion       |
| otel.status_code                 |
| parent_span_id                   |
| service.name                     |
| <ul> <li>Tag Keys (2)</li> </ul> |
| ▼ span_id                        |
| <ul> <li>trace_id</li> </ul>     |





| Measurement 👔                |
|------------------------------|
| logs 👻                       |
| Q Search fields and tag keys |
| - Fields 🕑                   |
| attributes                   |
| name                         |
| - Tag Keys 😮                 |
| ▼ span_id                    |
| ✓ trace_id                   |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |



# Hybrid InfluxDB Solutions





#### Edge Data Replication







**Data Action** 



#### Data Action



platform.

Allows users to create interactive dashboards for real-time data analysis and tracking of metrics across various data sources.

### Grafana is an open-source data visualization and monitoring



#### Grafana Flavours







### Grafana Flow

| FlightSQ                    | L                                                                   |                            |                                                    | <b>&gt;&gt;&gt;</b> | Fligh | ntSQL ~  |            |            |               |         |
|-----------------------------|---------------------------------------------------------------------|----------------------------|----------------------------------------------------|---------------------|-------|----------|------------|------------|---------------|---------|
| Type: FlightSQL             |                                                                     |                            |                                                    |                     | ~ A   | (Flig    | htSQL)     |            |               |         |
| ţļ Settings                 |                                                                     |                            |                                                    |                     | 1     | SELECT   | usage_idle | , time, c  | pu FROM iox.c | pu WHER |
| Provisioned     This data s | <b>d data source</b><br>ource was added by config and cannot be mod | ified using the UI. Please | contact your server admin to update this data sour | rce                 |       |          |            |            |               |         |
| ⊘ Alerting supported        |                                                                     |                            |                                                    |                     |       |          |            |            |               |         |
| Name 🛈 FlightSQL            |                                                                     | Default                    |                                                    |                     |       |          |            |            |               |         |
| FlightSQL Conn              | ection                                                              |                            |                                                    |                     | {} `  | · 🗐      |            |            |               |         |
| Host:Port                   | eu-central-1-1.aws.cloud2.influxdata.com:443                        |                            |                                                    |                     | For   | mat As   | Table      | ~          | Builder View  | Sho     |
| Auth Type                   |                                                                     |                            |                                                    |                     | + A0  | ld auerv | က် Que     | rv historv | (i) Insp      | ector   |
| Require TLS / SSL           |                                                                     |                            |                                                    |                     |       |          |            |            |               |         |
| MetaData                    |                                                                     |                            |                                                    | _                   |       |          |            |            |               |         |
| Кеу                         | bucket-name                                                         | Value                      | telegraf +                                         |                     |       |          |            |            |               |         |
| Back Explore                | Delete Test                                                         |                            |                                                    |                     |       |          |            |            |               |         |
|                             |                                                                     |                            |                                                    |                     |       |          |            |            |               |         |

Datasource

|                 |                     | Split | 品 Add to |
|-----------------|---------------------|-------|----------|
|                 |                     |       |          |
| E \$timeRange(t | ime) order by time  |       |          |
|                 |                     |       |          |
| w Query Help    |                     |       |          |
|                 | Table               |       |          |
|                 | Atom a              |       |          |
| usage_idle      |                     | cpu   |          |
| 95.7            | 2023-05-02 14:02:57 | cpu4  |          |
| 93.9            | 2023-05-02 14:02:57 | cpu3  |          |
|                 |                     |       |          |

#### Explore



### Grafana Official InfluxDB v3 Data Source

| InfluxDB V3                                                  |         |
|--------------------------------------------------------------|---------|
| Type: InfluxDB                                               |         |
| tlt Settings 🔒 Permissions 🙃 Insights 😝 Cache                |         |
| Name 🛈 InfluxDB V3                                           | Default |
| Query language                                               |         |
| SQL Q                                                        |         |
| InfluxQL<br>The InfluxDB SQL-like query language.            |         |
| <b>SQL</b><br>Native SQL language. Supported in InfluxDB 3.0 |         |
| Flux<br>Supported in InfluxDB 2.x and 1.8+                   |         |





### Grafana Flow



Visualize



### Useful Queries

#### **SQL** Command

#### SELECT

```
$___dateBin(time) ,
avg(usage_user) AS 'usage_user',
avg(usage_system) AS 'usage_system',
avg(usage_idle) AS 'usage_idle'
FROM cpu
WHERE cpu='cpu-total' AND $___timeRange(time)
GROUP BY 1
ORDER BY time
```

#### SELECT

```
selector_last(total, time)['time'] AS time,
selector_last(total, time)['value'] / 1024 / 1024 / 1024 As total
FROM mem
WHERE host='${linux_host}' AND $__timeRange(time)
ORDER BY time
```





### Example Dashboard



![](_page_42_Picture_3.jpeg)

influxdata<sup>®</sup>

### Alerting

![](_page_43_Figure_1.jpeg)

#### Rules

![](_page_43_Picture_4.jpeg)

**slack** 

![](_page_43_Picture_6.jpeg)

![](_page_43_Picture_7.jpeg)

Endpoints

![](_page_43_Picture_9.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_44_Picture_3.jpeg)

#### **Data Action**

![](_page_44_Picture_5.jpeg)

# Observability POC/Demo

#### **OpenTelemetry with InfluxDB**

This demo provides a practical example of integrating InfluxDB, a high-performance time series database, with OpenTelemetry, an open-source observability framework, to achieve real-time monitoring and tracing of a distributed application.

![](_page_46_Figure_2.jpeg)

- Aims to provide a standard for converting OTEL -> InfluxDB Schema and InfluxDB Schema -> OTEL
- Parts of **otelcol-influxdb** can be replaced with **Telegraf**

#### **influx**data®

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_8.jpeg)

https://github.com/influxdata/influxd b-observability

![](_page_46_Picture_10.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_2.jpeg)

| HotROD - Rides On Demand    | 🗙 📔 🤤 Data Explorer   Jay-10 | ix   Influx 🗴 🧑 Open Teleme                | etry - Dashboardi 🗙          | +          |              |             |           |            |                 |               |
|-----------------------------|------------------------------|--------------------------------------------|------------------------------|------------|--------------|-------------|-----------|------------|-----------------|---------------|
| ← → C ① localhost           | :3000/d/jJwDAlE4z?var-Servic | e=redis&from=now-90d&to=                   | now                          |            |              |             |           |            |                 |               |
| M inbox (2) - joliffor 🗼 Ho | me - Confluence 🗎 Developer  | DevRei 🗎 Tools 🗎 Ti                        | ravel 🗎 Docs 🗎 I             | Particle 🗎 | Personal E   | Workshop    | s 🛅 Influ | DB Univers | ity 🛄 Sch       | ema Best Prac |
| Ô                           |                              |                                            |                              | Q Searc    | ch or jump t |             |           |            | 🖾 cmd           | +k            |
|                             | ds > Open Telemetry 🏠        | ~                                          |                              |            |              |             |           |            |                 |               |
| Service redis               | TraceID 120                  | 0011cb7f5fefbd                             |                              |            |              |             |           |            |                 |               |
| Services                    |                              | Duration                                   |                              |            |              |             |           |            |                 |               |
| service.name +              |                              | 40                                         |                              |            |              |             |           |            |                 |               |
| route                       |                              | an an haint at h                           |                              |            |              |             |           |            |                 |               |
| redis                       |                              |                                            |                              |            |              |             |           |            |                 |               |
| mysql                       |                              | 20                                         | L. L. milli                  |            | h ala        |             |           |            |                 |               |
| frontend                    |                              | 10                                         | Activity of Addition         | H. HI.     |              |             | A MILLING | h dh dh.   |                 | MAL HAR AND   |
| driver                      |                              | o <b>11111111111111</b>                    |                              |            |              |             |           |            |                 |               |
| customer                    |                              | 1:19:27.685 03:05:24.0<br>- < 30% - 30%+ - | 77 04:16:11.891<br>50%+ 70%+ | 03:20:0    | 05.867 06    | 5:25:30.681 | 04:52:1   | 3.844      | 08:53:59.4      | 53 08:54      |
|                             |                              | Service Latency Histor                     |                              |            |              |             |           |            |                 |               |
|                             |                              | Service Latency Histog                     | ji am                        |            |              |             |           |            |                 |               |
|                             |                              | 60<br>40                                   |                              |            |              |             |           |            |                 |               |
|                             |                              | 20                                         |                              |            |              |             |           |            |                 |               |
|                             |                              | 0                                          |                              | _          | _            |             |           |            |                 |               |
|                             |                              | 400 ms 600 ms 80                           | 0 ms 1 s                     | 1.20 s     | 1.40 s       | 1.60 s      | 1.80 s    | 2 5        | 2.20 s          | 2.40 s        |
| Traces                      |                              |                                            |                              |            | Relations    | hips        |           |            |                 |               |
| Trace ID                    | Trace name                   | Start time                                 | Du                           | ration     |              | ¢           |           |            | 11/             | 1 1           |
| 7efc85abb4d81950            | frontend: HTTP GET /         | 2023-05-11 14:31:09                        |                              | 546 ms     |              |             |           |            |                 | لمر           |
| 5301b76c15cd503a            | frontend: HTTP GET /         | 2023-05-11 14:28:25                        |                              | 729 ms     |              |             |           |            | $\sim$          | / *           |
| 47eaf4449a2ba81c            | frontend: HTTP GET /         | 2023-04-27 05:34:50                        |                              | 783 ms     |              |             |           |            | 0.33 mm (2.0    |               |
| 0621c48a4854f99d            | frontend: HTTP GET /         | 2023-04-27 03:43:52                        |                              | 701 ms     |              |             |           | 147        | TIP GET January | -1            |
|                             |                              |                                            |                              |            |              |             |           |            |                 |               |

![](_page_48_Figure_2.jpeg)

![](_page_48_Picture_3.jpeg)

|                             |                              |                                             |                               |                             |                                | _                     |
|-----------------------------|------------------------------|---------------------------------------------|-------------------------------|-----------------------------|--------------------------------|-----------------------|
| HotROD - Rides On Demand    | 🗙 🛛 🎒 Data Explorer   Jay-10 | x j influs 🗙 👩 Open Telemetry -             | Dashboard: × +                |                             |                                |                       |
| ← → C ① localhost           | :3000/d/jJwDAiE4z?var-Tracel | D=69c88cbe017a9001&var-Serv                 | ice=redis&from=\${url_tir     | me_from}&to=\${url_time_to} |                                |                       |
| M Inbox (2) - joliffor 🗼 Ho | me - Confluence 📄 Developer  | E DevRei E Tools E Travel                   | 🗎 Docs 🗎 Particle 🗎           | 🗄 Personal 🗎 Workshops 🗎    | InfluxDB University 🔲 Schema B | lest Prac             |
| Ø                           |                              |                                             | Q Sear                        | ch or jump to               | 🖾 cmd+k                        |                       |
| Home > Dashboar             | ds > Open Telemetry 🟠        | ц<br>С                                      |                               |                             |                                |                       |
| frontend                    |                              |                                             |                               | -                           |                                |                       |
| driver                      |                              |                                             |                               |                             |                                |                       |
| customer                    |                              | 15:26:34.168 15:26:3<br>- < 30% - 30% - 503 | 4.208 15:26:34.2<br>(+ - 70%+ | 231 15:26:34.257            | 15:26:34.305 1                 | 5:26:34.3             |
|                             |                              | Service Latency Histogram                   | 1                             |                             |                                |                       |
|                             |                              | 0                                           |                               |                             |                                |                       |
|                             |                              |                                             |                               |                             | 776 ms                         |                       |
| Traces                      |                              |                                             |                               | Relationships               |                                |                       |
| Trace ID                    | Trace name                   | Start time                                  | Duration                      |                             | HTTP GET. Dive                 |                       |
| 69c88cbe017a9001            | frontend: HTTP GET /         | 2023-05-11 15:26:33                         | 776 ms                        | — Total time (% of trace)   | - Self time (% of total) - Sel | )<br>=<br>If time / 1 |
| Trace 🖾                     |                              |                                             |                               |                             |                                |                       |
| frontend: HTTP GE           | T /dispatch 120011cb7f5fe    | fbd                                         |                               |                             |                                |                       |
| Trace Starts 2022-04-5      | 17.05-49-00 287 Duration     | 874 49me Candoan & Dante                    | E Total Course 50             |                             |                                |                       |
| Bys                         | 17 05:43:00.267 Duration.    | 168.62ms                                    | 1.5 Total Sparts: 50          | 337.24+                     |                                |                       |
|                             |                              |                                             |                               |                             |                                | <b>1</b> 91           |
|                             |                              |                                             |                               |                             |                                |                       |

![](_page_49_Picture_2.jpeg)

![](_page_49_Picture_3.jpeg)

## Whisper GPT Solution

**Telegraf:** Utilize Telegraf as our collection backbone. Deployed on all three servers and cloud infrastructure. Collects data from OTEL, Prometheus, CloudWatch, and raw server-based metrics.

**InfluxDB:** InfluxDB 3.0 is setup with four repositories called buckets representing each of our datasources. InfluxDB allows us to store metrics, logs, and traces in one datastore.

Grafana: Grafana acts as the observability hub. We use both the FlightSQL and the Jaeger datasource to query our data from InfluxDB 3.0.

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

# Next Steps

![](_page_51_Picture_2.jpeg)

## Try it yourself - Quick Starts

| ຼີຢ 🖌 🐨 🖁 🖓 🖓 Pranch 🖓 0 tags   |                        | Go to file Add file - | <> Code -    |
|---------------------------------|------------------------|-----------------------|--------------|
|                                 |                        |                       |              |
| Jayclifford345 Update README.md |                        | 18d0b6c now           | 10 commits   |
| emergency-generator             | added new example      |                       | last month   |
| plugins                         | updated readme         |                       | 3 months ago |
| system-monitoring               | updated docker-compose |                       | 3 months ago |
| vision-ai-pipeline              | added vision ai        |                       | 2 months ago |
| 🗋 .gitignore                    | initial commit         |                       | 3 months ago |
| README.md                       | Update README.md       |                       | now          |
|                                 |                        |                       |              |
| i≣ README.md                    |                        |                       | Ø            |

#### InfluxDB 3.0 Quick Starts

Welcome to the "InfluxDB IOx Quick Starts" repository! This repository is dedicated to providing easy to follow tutorials on how to integrate InfluxDB IOx with Grafana and Superset. InfluxDB IOx is a powerful time-series database solution and when paired with Grafana or Superset, both popular open-source visualization platform, you can create beautiful and informative dashboards to better visualize and understand your data.

This repository will cover the basics of setting up InfluxDB IOx and Grafana or Superset, how to connect them and how to guery data from InfluxDB IOx. Whether you are new to InfluxDB IOx or an experienced user, this repository is designed to help you get up and running with InfluxDB IOx, Grafana and Superset quickly and easily.

![](_page_52_Picture_7.jpeg)

![](_page_52_Picture_8.jpeg)

https://github.com/InfluxCommuni ty/InfluxDB-3-Quick-Starts

![](_page_52_Picture_10.jpeg)

## Try it yourself - OTEL

#### OpenTelemetry & InfluxDB

#### Welcome

Welcome to the InfluxDB OpenTelemetry Demo! In this demo, you will learn about OpenTelemetry and how it can be integrated with InfluxDB to collect, process, and store metrics, logs and traces.

#### What is OpenTelemetry?

OpenTelemetry is an observability framework for cloud-native software, designed to provide a single set of APIs for collecting and processing telemetry data such as metrics, logs, and traces. OpenTelemetry aims to simplify instrumentation by providing a consistent and vendor-neutral approach, allowing developers to build and deploy applications without being locked into a specific observability platform. It is a project within the Cloud Native Computing Foundation (CNCF) and is the result of a merger between OpenTracing and OpenCensus.

#### Architecture Overview

Here is a high level overview of the architecture

![](_page_53_Figure_8.jpeg)

![](_page_53_Figure_9.jpeg)

![](_page_53_Picture_10.jpeg)

![](_page_53_Picture_12.jpeg)

https://github.com/InfluxCommunity /influxdb-observability

![](_page_53_Picture_14.jpeg)

### Getting started

#### Sign up

Influxdata.com

Via cloud marketplace

#### Learn

- Self-service content  $\checkmark$
- Documentation  $\checkmark$
- InfluxDB University  $\checkmark$

![](_page_54_Picture_8.jpeg)

https://influxdbu.com/

https://influxcommunity.slack.com/

#### **Get InfluxDB**

![](_page_54_Picture_13.jpeg)

![](_page_54_Picture_14.jpeg)

![](_page_54_Picture_15.jpeg)

![](_page_54_Picture_16.jpeg)

#### THANK YOU

#### Any Questions?

![](_page_55_Picture_3.jpeg)

# **influxdata**<sup>®</sup>

#### influxdata.com