

Summary 3

Introduction 3
Why time series? ​4

Test design 4
About InfluxDB ​4

InfluxDB version tested: v1.8.0 ​4

About Elasticsearch ​4

Elasticsearch version tested: v7.8.0 ​4

Comparison at-a-glance ​5

InfluxDB ​5

Elasticsearch ​5

Overview ​5

The dataset ​6

Overview of the parameters for the sample dataset ​6

Test methodology 7
Write performance ​7

Query performance ​8

On-disk storage requirements ​9

Testing hardware ​10

User experience comparison ​10

Syntax and convenience ​10

InfluxDB ​11

Elasticsearch ​11

Mental models ​12

About InfluxData ​13

InfluxDB documentation, downloads & guides ​13

What is time series data? ​14

What is a time series database? ​14

 2​ ​/ 15

Summary
In the course of benchmarking for this paper we looked at the performance of InfluxDB and

Elasticsearch performance across three vectors:

● Data ingest performance - measured in values per second

● On-disk storage requirements - measured in bytes

● Mean query response time - measured in milliseconds

The benchmark tests and resulting data demonstrated that InfluxDB outperformed Elasticsearch

across all three tests by a significant margin. Specifically:

● InfluxDB outperformed Elasticsearch by ​3.8x​ when it came to data ingestion

● InfluxDB outperformed Elasticsearch by up to ​7.7x​ when measuring query performance

● InfluxDB outperformed Elasticsearch by delivering ​9x​ better compression

It’s also important to note that configuring Elasticsearch was involved — it requires up-front

decisions about ​indexing​, ​heap sizing​ and how to work with the ​JVM​. InfluxDB, on the other hand,

is ready to use for time series workloads, out of the box with no additional configuration.

Introduction
In this technical paper, we’ll compare the performance and features of InfluxDB and Elasticsearch

for common​ ​time series​ ​workloads, specifically looking at the rates of data ingestion, on-disk data

compression and query performance. This data should prove valuable to developers and architects

evaluating the suitability of these technologies for their use case. Specifically, the time series data

management use cases involving the building​ ​DevOps Monitoring​ (Infrastructure Monitoring,

Application Monitoring, Cloud Monitoring),​ ​IoT Monitoring​ and​ ​Real-Time Analytics​ ​applications.

Our goal with this benchmark test was to create a consistent, up-to-date comparison that reflects

the latest developments in both InfluxDB and Elasticsearch. Periodically, we’ll re-run these

benchmarks and update this document with our findings. All of the code for these benchmarks is

available on​ ​GitHub​. Feel free to open up issues or pull requests on that repository or if you have

any questions, comments or suggestions.

 3​ ​/ 15

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_java_virtual_machine.html
https://www.influxdata.com/time-series-database/
https://www.influxdata.com/customers/infrastructure-and-application-monitoring/
https://www.influxdata.com/customers/iot-data-platform/
https://www.influxdata.com/customers/real-time-analytics/
https://github.com/influxdata/influxdb-comparisons

Why time series?

Time series data has historically been associated with applications in finance. However, as

developers and businesses move to instrument more in their servers, applications, network and

the physical world, time series is becoming the de facto standard for how to think about storing,

retrieving, and mining this data for real-time and historical insight. To learn more about why you

should insist on using a purpose-built, time series backend versus attempting to retrofit a

document, full-text, or RDBMS to satisfy your use case, check out the “​Why Time Series Matters

for Metrics, Real-Time and IoT/Sensor Data​” technical paper.

Test design

About InfluxDB

InfluxDB version tested: v1.8.0

InfluxDB is an open source time series database written in Go. At its core is a custom-built storage

engine called the ​Time-Structured Merge (TSM) Tree​, which is optimized for time series data.

Controlled by a custom SQL-like query language named ​InfluxQL​, InfluxDB provides

out-of-the-box support for mathematical and statistical functions across time ranges and is

perfect for custom monitoring and metrics collection, real-time analytics, plus IoT and sensor data

workloads.

About Elasticsearch

Elasticsearch version tested: v7.8.0

Elasticsearch is an open source search server written in Java and built on top of​ ​Apache Lucene​. It
provides a distributed, full-text search engine suitable for enterprise workloads. While not a time

series database per se, Elasticsearch employs Lucene’s column indexes, which are used to

efficiently aggregate numeric values. Combined with query-time aggregations and the ability to

 4​ ​/ 15

https://www.influxdata.com/resources/why-time-series-matters-for-metrics-real-time-and-sensor-data/
https://www.influxdata.com/resources/why-time-series-matters-for-metrics-real-time-and-sensor-data/
https://influxdata.com/blog/new-storage-engine-time-structured-merge-tree/
https://docs.influxdata.com/influxdb/v1.4/query_language/
https://lucene.apache.org/

index on timestamp fields (which is also important for storing and retrieving log data),

Elasticsearch provides the primitives for storing and querying time series data.

Please note that this paper does not look at the suitability of InfluxDB for workloads other than

those that are time series-based. InfluxDB is not designed to satisfy full-text search or log

management use cases and therefore will not be explored in this paper. For these use cases, we

recommend sticking with Elasticsearch or similar full-text search engines.

Comparison at-a-glance

InfluxDB Elasticsearch

Description Database designed for time series,
events and metrics data management

Full-text search engine based on
the Apache Lucene project

Website https://influxdata.com/ https://www.elastic.co/

GitHub https://github.com/influxdata/influxdb https://github.com/elastic/elastics
earch

Documentation https://docs.influxdata.com/influxdb/la
test/

https://www.elastic.co/guide/inde
x.html

Initial release 2013 2010

Latest release v1.8.0, April 2020 v7.8.0, June 2020

License Open Source, MIT Open Source, Apache

Language Go Java

Operating Systems Linux, OS X Linux, OS X, Windows

Data Access APIs HTTP Line Protocol, JSON, UDP JSON, binary protocol (Java)

Schema Schema-free Schema-free

 5​ ​/ 15

Overview

In building a representative benchmark suite, we identified the most commonly evaluated

characteristics for working with time series data. As we’ll describe further below, we looked at

performance across three vectors:

1. Data ingest performance - measured in values per second

2. On-disk storage requirements - measured in bytes

3. Mean query response time - measured in milliseconds

C O N C L U S I O N :

InfluxDB outperformed Elasticsearch in write throughput,
on-disk compression and query performance.

Since Elasticsearch is a full-text search server and not intended for time series data out of the

box, some ​configuration changes​ are​ ​recommended by Elastic​ for storing these types of metrics.

In our testing, we found that these changes:

● Didn’t have an impact on write or query performance

● Did make a difference in storage requirements

We’ll cover the impact of this in more detail in a later section.

The dataset

Overview of the parameters for the sample dataset

Number of servers 100

Values measured per server 100

Measurement interval 10s

Dataset duration(s) 24h

Total values in dataset 87,264,000

 6​ ​/ 15

https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html

This is only a subset of the entire benchmark suite, but it’s a representative example. At the end of

this paper we will discuss other variables and their impacts on performance. If you’re interested in

additional details, you can read more about the testing methodology on ​GitHub​.

Test methodology

Write performance

To test write performance, we concurrently batch loaded the 24-hour dataset with 16 worker

threads. We found that the average throughput of Elasticsearch was 702,825 values per second

(using the aggregation template, more details below). The same dataset loaded into InfluxDB at a

rate of 2,674,948 values per second, which corresponds to approximately 3.8x faster ingestion by

InfluxDB. (Remember: the concurrency for this test was 16 with 100 hosts reporting).

This write throughput stays relatively consistent across larger datasets (i.e. 48 hours, 72 hours, 96

hours).

 7​ ​/ 15

https://github.com/influxdata/influxdb-comparisons

C O N C L U S I O N :

InfluxDB outperformed Elasticsearch by 3.8x when examining

data ingestion performance.

Query performance

To test query performance, we chose a query that aggregates data for a single server over a

random one-hour period of time, grouped into one-minute intervals, potentially representing a

single line on a visualization, a common DevOps monitoring and metrics function. Querying an

individual time series is common for many IoT use cases as well.

To reduce variability, the query times were averaged over 1,000 runs. With one worker thread, we

found that the mean query response time for Elasticsearch was 8.27ms (120 queries/sec). The

same query took an average of 1.08ms (925 queries/sec) on InfluxDB, demonstrating

approximately 7.7x faster query performance than Elasticsearch.

 8​ ​/ 15

C O N C L U S I O N :

InfluxDB responded 7.7x faster to query requests than

Elasticsearch.

On-disk storage requirements

As mentioned above, we chose to utilize Elasticsearch in the recommended configuration for time

series data. However, we also wanted to give some insight into how the storage requirements

compared against the default Elasticsearch configuration as well.

For the same 24-hour dataset outlined above, we looked at the amount of disk space used after

writing all values and allowing each database’s native compaction process to finish. We found that

the dataset required 1.4 GB for Elasticsearch with the aggregate schema and 1.8 GB for

Elasticsearch with the default schema. The same dataset required only 155 MB for InfluxDB,

corresponding to 9x and 12x better compression by InfluxDB, respectively. This results in

approximately 1.8 bytes per value for InfluxDB and 16 bytes per value for Elasticsearch (21.5 for the

default schema).

 9​ ​/ 15

Largely, the additional storage requirement for Elasticsearch with the default configuration comes

from the persistence of the ​_source​ data, which is a byproduct of full-text search features such

as highlighting, where the original source document is required. However, even with that data

discarded, the Lucene-based DocValues storage format provided by Elasticsearch gives

sub-optimal compression when compared to InfluxDB for time series workloads.

C O N C L U S I O N :

InfluxDB outperformed Elasticsearch by delivering 9x better

on-disk compression.

Testing hardware

All of the tests performed were conducted on two virtual machines in AWS, running Ubuntu 16.04

LTS. We used the instance type r4.4xlarge (Intel Xeon E5-2686 v4 2.3GHz, 16 vCPU, 122 GB RAM,

1x EBS Provisioned 6,000 IOPS SSD 250GB) for a database server and c4.xlarge instance type

(Intel Xeon E5-2666v3 2.9GHz, 4 vCPU, 7.5GB RAM) for a client host with the data load and query

clients.

User experience comparison

The user experiences of InfluxDB and Elasticsearch differ in two key ways: syntax and

convenience, and mental models. Elastic was designed for full-text search while InfluxDB was

designed with time series as a first-class citizen. This section of the paper is largely subjective so

your mileage may vary.

Syntax and convenience

Elasticsearch’s query language is JSON. This can be both good and bad: while it’s immediately

readable for most developers, hand-writing queries in JSON might feel awkward. For example,

remembering to skip final commas when writing JSON arrays could be frustrating.

Additionally, the Elasticsearch HTTP API allows many syntactically-valid JSON requests regardless

of the intended semantics. This means that if a mistake is made in an index template declaration

 10​ ​/ 15

(by incorrectly nesting an aggregation clause), the server would readily accept the input. For

example, in Elasticsearch 5.6.3 and later, the ​minimum_should_match​ parameter is no longer

recognized in certain contexts. However, Elasticsearch would still silently allow it to be included in

a query.

InfluxDB’s query language, InfluxQL, provides a relatively concise way to work with time series. For

example, compare these two logically-equivalent queries:

InfluxDB

SELECT mean(usage_user) from cpu where time >=
'2018-01-12T04:29:14-08:00' and time < '2018-01-13T04:29:14-08:00' group
by time(1h)

Elasticsearch

{
 "size" : 0,
 "aggs": {
 "result": {
 "filter": {
 "range": {
 "timestamp": {
 "gte": "2018-01-12T04:29:14-08:00",
 "lt": "2018-01-13T04:29:14-08:00"
 }
 }
 },
 "aggs": {
 "result2": {
 "date_histogram": {
 "field": "timestamp",
 "interval": "1h",
 "format": "yyyy-MM-dd-HH"
 },
 "aggs": {
 "avg_of_field": {
 "avg": {
 "field": "usage_user"
 }
 }

 11​ ​/ 15

 }
 }
 }
 }
 }
}

Queries in Elasticsearch are more verbose, even for relatively simple tasks.

Another difference between the two databases is type inference. Both databases have fields that

are strongly-typed, and that type is inferred from the first value they see for that field.

In Elasticsearch, for example, if a user creates a document with field ​foo​ set to ​bar​, it will

correctly infer that field foo is a variable-length string field. If another document is then inserted

with field ​foo​ set, the database will reject any value that is not a string.

In Elasticsearch, this type inference can cause unexpected errors. If a document is created with

field ​bar​ set to 1, Elasticsearch can’t know what kind of number it is — is it an integer, float,

bignum, or some other type? Elasticsearch assumes that numbers without decimal points are

integers by default. This can be especially problematic when a value changes from an ambiguous

whole number, such as 0, to a nearby floating point value, such as 0.1. In this case, the solution is

to always print the decimal point, but it requires more user intervention to avoid this confusion.

In contrast, InfluxDB requires values to conform to a small set of types, each with their own

syntax:

Boolean: true, false

Integer: 0i, 123i

Float: 0, 0.0, 123.0

String: “foo”

Because integers are suffixed with an ​i​, there is no ambiguity when dealing with numerical values,

and no type inference problems. All other values are stored natively as 64-bit floating point

numbers.

 12​ ​/ 15

Mental models

As noted already, Elasticsearch is a full-text search server which also happens to have a datastore

that can be used for time series data. On the other hand, InfluxDB is purpose-built to support time

series data.

Elasticsearch’s flexibility comes at a price: any particular use case needs to be modeled to

correctly utilize the primitives Elasticsearch provides.

For example, while evaluating the differences between Elasticsearch’s default indexing template

and the recommended configuration for time series data, it was necessary to know about the

details of how Elasticsearch and Lucene store data on disk. The result was a set of design

decisions that took into account how Elasticsearch works, the shape of the data, and the expected

queries. This end-to-end thinking is needed when configuring any generalized datastore: using it

optimally requires knowing how the internal mechanisms work and presents a much steeper

learning curve.

InfluxDB requires fewer decisions from the user because it is purpose-built for the time series use

case. It makes it easier to think directly in terms of the data, with the concepts of “measurements,”

“tags” and “fields”.

In conclusion, we highly encourage developers and architects to run these benchmarks

themselves to independently verify the results on their hardware and datasets of choice. However,

for those looking for a valid starting point on which technology will give better time series data

ingestion, compression and query performance “out-of-the-box,” InfluxDB is the clear winner

across all of these dimensions, especially when the datasets become larger and the system runs

over a longer period of time.

About InfluxData

InfluxData is the creator of InfluxDB, the open source time series database. Our technology is

purpose-built to handle the massive volumes of time-stamped data produced by IoT devices,

applications, networks, containers and computers. We are on a mission to help developers and

organizations, such as Cisco, IBM, PayPal, and Tesla, store and analyze real-time data, empowering

them to build transformative monitoring, analytics, and IoT applications quicker and to scale. InfluxData

is headquartered in San Francisco with a workforce distributed throughout the U.S. and across Europe.

 13​ ​/ 15

Learn more​.

InfluxDB documentation, downloads & guides

Download InfluxDB

Get documentation

Tutorials

Join the InfluxDB community

What is time series data?

Time series data is nothing more than a sequence of values, typically consisting of successive

measurements made from the same source over a time interval. Put another way, if you were to

plot your values on a graph, one of your axes would always be time.

Time series databases are optimized for the collection, storage, retrieval and processing of time

series data; nothing more, nothing less. Compare this to document databases optimized for storing

JSON documents, search databases optimized for full-text searches or traditional relational

databases optimized for the tabular storage of related data in rows and columns.

What is a time series database?

Baron Schwartz has outlined​ ​some of the typical characteristics of a purpose-built time series

database. These include:

● 90+% of the database’s workload is a high volume of high-frequency writes.

● Writes are typically appends to existing measurements over time.

● These writes are typically done in a sequential order, for example: every second or every

minute.

● If a time series database gets constrained for resources, it is typically because it is I/O

bound.

● Updates to correct or modify individual values already written are rare.

● Deleting data is almost always done across large time ranges (days, months or years)

rarely if ever to a specific point.

● Queries issued to the database are typically sequential per-series, in some form of sort

order with perhaps a time-based operator or function applied.

● Issuing queries that perform concurrent reads or reads of multiple series are common.

 14​ ​/ 15

http://www.influxdata.com/
https://influxdata.com/get-influxdb/
https://docs.influxdata.com/
https://www.influxdata.com/university/
https://www.influxdata.com/community-showcase/
http://www.xaprb.com/blog/2014/06/08/time-series-database-requirements/

799 Market Street

San Francisco, CA 94103

(415) 295-1901

www.InfluxData.com

Twitter: ​@InfluxDB

Facebook: ​@InfluxDB

 15​ ​/ 15

http://www.influxdata.com/
https://twitter.com/influxdb?lang=en
https://www.facebook.com/influxdb/

