


The never-ending quest to support large time series
One of the long-standing requests for InfluxDB is support for many types of time series data.
What this means, more specifically, is support for high cardinality in the number of unique time
series the database stores. Currently, customers with tens of millions of time series are looking to
expand to hundreds of millions and even billions of unique time series.

The last iteration of the InfluxDB engine (TSI), focused on addressing ephemeral time series. We
saw this often with use cases that tracked per-process or per-container metrics by putting their
identifiers in tags. Ephemeral data, or data lasting for a brief period, became the norm as
organizations deployed more IoT sensors and spun up containers with sophisticated
orchestrators, such as Kubernetes.

Now, the focus of our users has started to shift to bringing in as much raw data as possible and
then deriving their own insights from that raw data. The new storage engine represents the next
phase of InfluxDB and its goal to support near-unlimited cardinality. We bring metrics, raw events,
and tracing time series data into a single database core, allowing users to create time series on
the fly from raw, high-precision event data.

What is the new InfluxDB Engine?

One datastore for all time series data (metrics, events, traces)
Users can write any event data with near infinite cardinality and slice-and-dice data on any
dimension without sacrificing performance. This opens up use cases that rely on any combination
of event, tracing, observability, and other ephemeral, extremely high cardinality data.

Unified query engine
The query engine underpinning InfluxDB 3.0 does not just support the ingestion of high
cardinality data. We optimized InfluxDB 3.0 to query both “hot” data from in-memory cache and
“cold” data from cloud object stores. Furthermore, queries that touch multiple time series are
orders of magnitude faster in InfluxDB 3.0 than in previous versions of InfluxDB. Querying across
ten series or 1 million series yields the same performance, making analytics across
high-cardinality data possible.

Understands SQL and InfluxQL query languages
The InfluxDB 3.0 supports SQL queries natively, and offers continued support for InfluxQL.
InfluxDB 3.0 also takes advantage of Arrow Flight SQL to offer compatibility with third-party tools
like Grafana, PowerBI, and Tableau.

2 / 6



Parquet support
InfluxDB 3.0 persists data to disk as Parquet files, a columnar format that provides extremely high
compression ratios. This enables users to store more, high precision data in less space. As a
result, you have more data and spend less to keep it. Parquet is also an open storage format that
many other services and ecosystems use. Therefore, Parquet files offer opportunities for
extending the use and value of time series data through interoperability with Machine Learning
tools like DataBricks, Amazon Forecast, H20.AI, and more.

Optimized for low latency queries
InfluxDB 3.0 leverages several open source technologies in the Apache Arrow project. These
technologies allowed us to optimize InfluxDB for sub-second query responses using techniques
such as vectorization, predicate pushdowns, aggregate pushdowns, parallelism, and more. Taken
together, all this means that you can run analytics on the leading edge of data.

To understand how these technologies help build a new engine, we need to know what they are.

● Rust is a performant programming language that offers fine-grain memory management.
● Apache Arrow is a framework for defining in-memory columnar data.
● Apache Parquet is a column-oriented durable file format.
● Arrow Flight is a client-server framework designed to transport large datasets over

network interfaces without significantly impacting performance.

3 / 6

https://www.influxdata.com/glossary/apache-arrow/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global
https://www.influxdata.com/glossary/apache-parquet/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global
https://www.influxdata.com/glossary/apache-arrow-flight-sql/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global


● Apache DataFusion is an extensible, in-memory query planning, optimization, and
execution framework. It’s written in Rust and uses Apache Arrow as its in-memory format.

Requirements for the new storage engine
To understand why we chose these technologies and what needs they fulfill, it’s helpful to look at
the various features and requirements we wanted InfluxDB 3.0 to have. The following table
outlines several key requirements and goals for InfluxDB and which technologies are critical for
achieving them.

Requirement/Feature Rust Arrow DataFusion Parquet

1. No limits on cardinality.
Write any kind of event data
and don't worry about what
a tag or field is.

X X X X

2. Best-in-class performance
on analytics queries in
addition to our already
well-served metrics queries.

X X X X

3. Separate compute from
storage and tiered data
storage. The DB should use
cheaper object storage as
its long-term durable store.

X X

4. Operator control over
memory usage. The
operator should be able to
define how much memory is
used for each buffering,
caching, and query
processing.

X

5. Bulk data import and export. X

4 / 6

https://www.influxdata.com/glossary/apache-datafusion/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global


6. Broader ecosystem
compatibility. Where
possible, we should aim to
use and embrace emerging
standards in the data and
analytics ecosystem.

X X X X

7. Run at the edge and in the
datacenter. Federated by
design.

X X

Cardinality and performance gains
One of the significant drivers for InfluxDB 3.0 is improving performance. Specifically, we want to
enable InfluxDB to handle large datasets without sacrificing performance. In order to achieve this,
we needed to solve the cardinality problem, which we did, using the Apache Arrow ecosystem.

Whereas previous versions of InfluxDB required bounded data for tag values, InfluxDB 3.0
doesn’t need to differentiate between tag and field values. As a result, the InfluxDB 3.0 can
handle nearly unlimited cardinality. InfluxDB has always been able to handle metrics really well,
but the updates to InfluxDB 3.0 and the accompanying performance gains open up the number
and types of use cases to include those that rely on real-time analysis of large, high cardinality
datasets, like tracing and observability. Now users can write massive amounts of time series data,
whether that’s metrics, events, traces, or logs, to power these use cases without a drop in
performance.

Furthermore, InfluxDB 3.0’s support for high cardinality isn’t just limited to data ingestion. Queries
that touch multiple time series are orders of magnitude faster in InfluxDB 3.0 than in our previous
versions of InfluxDB. So, whether you’re querying across ten series or 1 million series, the
database performs the same. This makes analytics across high cardinality data possible.

Conclusion
InfluxDB 3.0 delivers the capabilities and performance for large datasets that users want. As a
purpose-built database for time series, InfluxDB 3.0 enables users to create value from leading
edge data in real-time. Native SQL support improves developer productivity and reduces barriers
to entry. Leveraging the Parquet data format delivers better data compression to lower costs and
provides interoperability and extensibility with other popular ecosystems. Flight SQL enables
integrations with key third party tools, like Grafana for visualization, to ensure you can get
maximum value from your time series data. InfluxDB 3.0 takes time series to the next level, and
we can’t wait to see what you build with it.

5 / 6

https://www.influxdata.com/glossary/cardinality/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global


InfluxDB documentation, downloads & guides

Get InfluxDB

Try InfluxDB Cloud for Free

Get documentation

Additional tech papers

6 / 6

https://influxdata.com/get-influxdb/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global
https://www.influxdata.com/products/influxdb-cloud/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global
https://docs.influxdata.com/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global
https://www.influxdata.com/_resources/?utm_source=collateral&utm_medium=print&utm_campaign=2023-02_tp_influxdb-storage-engine_global
https://www.influxdata.com/get-influxdb/

