

Industrial IoT

Webinar

Ben Corbett

Solutions Engineer, InfluxData

Agenda

- Industry 4.0 and Challenges
- InfluxDB 3.0 Overview
- InfluxDB for IIoT
- Use Cases

Industry 4.0 and Data Challenges

IoT

Cloud Computing

Edge Computing

5G Networking

AI and ML

Cyber Security

Digital Twins

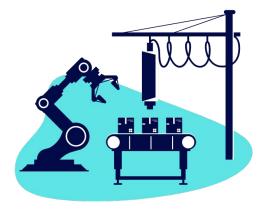
Real-time Analytics

Operational efficiency

Data Analytics & insights

Customisation & flexibility

Quality control


Supply chain optimisation

Workplace safety

Connectivity & collaboration

Energy & sustainability

Cost controls & efficiency

ΙοΤ	Operational efficiency				
Cloud Computing	Data Analytics & insights	Fast 🛉	Serv	rice Capability	Low
Edge Computing	Customisation & flexibility			Maintenance > 90% OEE	
	Quality control			Preventative Maintenance	
5G Networking	Supply chain optimisation	Time to Insights		75-90% OEE	Cost / Site Visits
AI and ML	Workplace safety		Schedu 50-70%	uled Maintenance 6 OEE	
Cyber Security	Connectivity & collaboration		Failure / Break Fi	x	
Digital Twins	Energy & sustainability	Slow	< 50% OEE		🔶 High
Real-time Analytics	Cost controls & efficiency		*OEE - Over	all Equipment Effectiveness	

Operational Technology (OT) Goals

Reliability

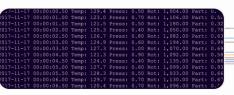
Your assets become more reliable.

OEE (Overall Equipment Effectiveness) Production Efficiency

Find new ways to run with greater efficiency.

> OE (Operational Efficiency)

Optimization



Optimize performance to match demand

ROI (Return On Investment)

Industrial sensors "speak" time series

- Measuring change over time status, performance, problems
- Events and activity encapsulated by time interval
- Time is often the magnifying glass for operation
- Term "historian" is apropos

9 | © Copyright 2023, InfluxData

Sensor Monitoring & Analytics

Real-Time analytics for IoT

Predictive Maintenance

100,000+ Sensors

1 Billion+ Datapoints

Nanosecond Data Frequency Billions of Device Tags

Challenges with managing time series data

Massive Scale

Data is continuously arriving at high speed and volume

Real Time Action

Applications must analyze data within streams and act in real time

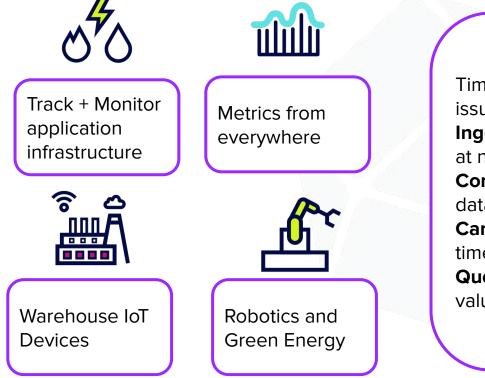
Data Cardinality

Higher number of tags collected cause high cardinality impacting performance

Most tools (including data historians) simply cannot handle these challenges

Relational datastores are not a fit for purpose

- Scale Cannot ingest large volumes of data in short time period
- **Slow queries** Not architected for real-time querying
- Lifecycle management Sharding
 & data retention are not built-in



Data historians are not a fit for purpose

- Cost Proprietary and expensive
- Vendor Lock-in Windows-based and no simple, open API
- **Scalability** Manual techniques for analysis

Use Cases - Time Series

Time series databases address a few major issues.

Ingest - A high amount of data streaming in at nano second precision Compression - The ability to store this large data set without breaking the bank Cardinality - The need to store wide rows, timestamped data with multiple values Querying on Time - Instead of indexes or values, querying on time

What makes InfluxDB Special

Uniquely equipped for time series data

Scale

Designed to scale for large volumes of time series data

Distributed

Non-blocking high volume writes and reads

Availability Write and read availability are prioritized

Management

Data lifecycle management with built-in data retention

Flexible

Schema on write

High performance at any scale

Unlimited

Data cardinality

Billions

Data points per second

InfluxDB 3.0: Columnar database for high performance & low cost

Real Time	Lowest cost storage	∙∳∙ Unlimited Cardinality		
Hot data in memory	Cold data in object store	Optimized writes & reads		
Sub-second responses for recent data	Superior compression & reduced TCO	One datastore for all time series data		
Optimized for low latency analytical queries	Optimized for lowest cost long term storage	Optimized for ingest scale & speed		

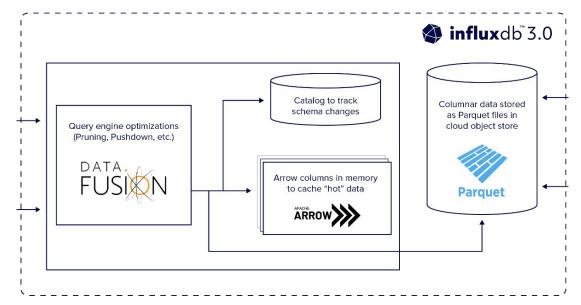
 \cap

InfluxDB 3.0: an Open Data Architecture

Flight

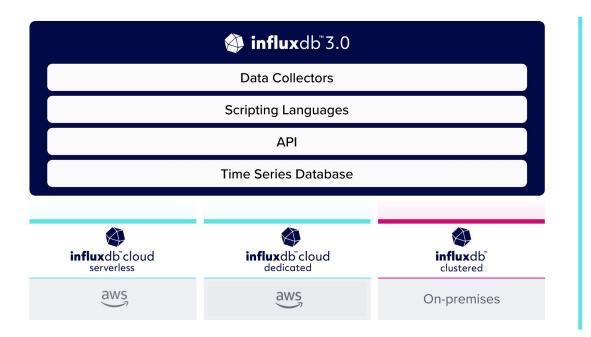
Transport columnar data at high speeds based on Arrow format

DataFusion


Fast query execution engine written in Rust

Arrow

Optimized for running large analytical workloads


Parquet

Open column-oriented file format designed for efficient data storage and retrieval

InfluxDB 3.0: Run on cloud & on-premises

Cloud Serverless

 managed service for small & medium workloads

Cloud Dedicated

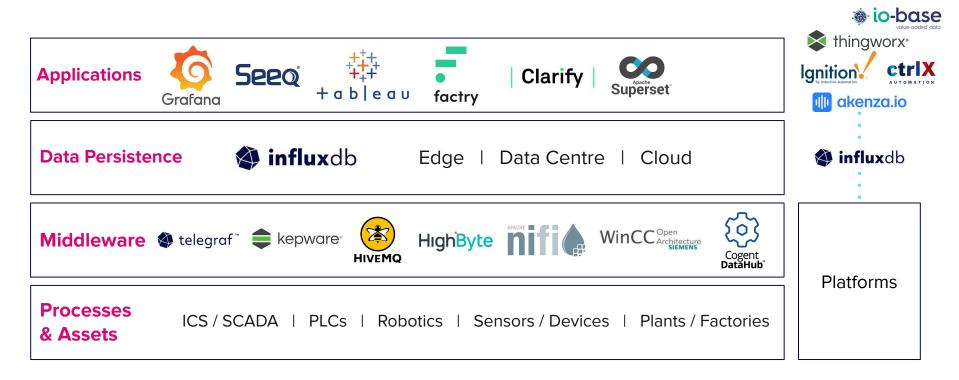
 managed service for large enterprise workloads

Clustered

 software for large enterprise workloads in self-managed environments

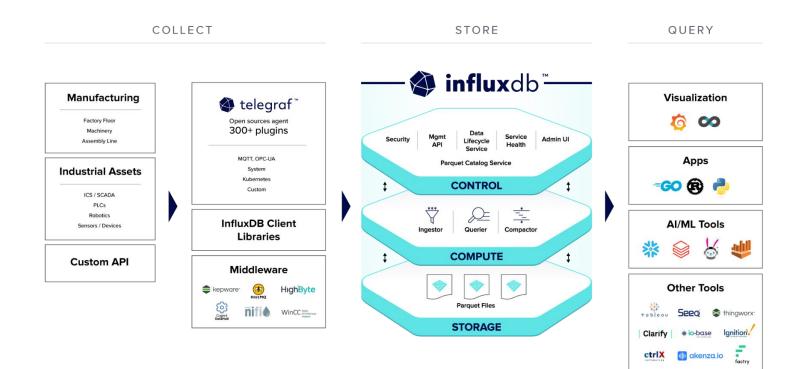
* We strongly encourage that customers evaluate the InfluxDB Edition that is desired for production

InfluxDB for Industrial IoT

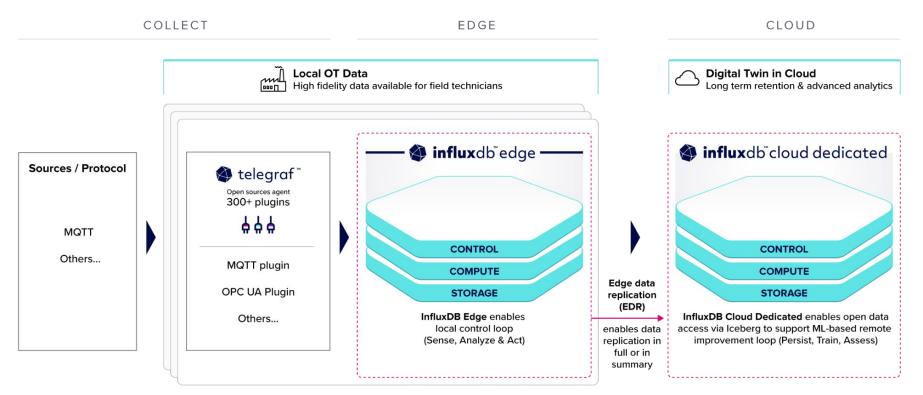

Why InfluxDB for Industrial IoT?

- ✔ Get Real-time Insights
- ✔ Optimize OEE & Production

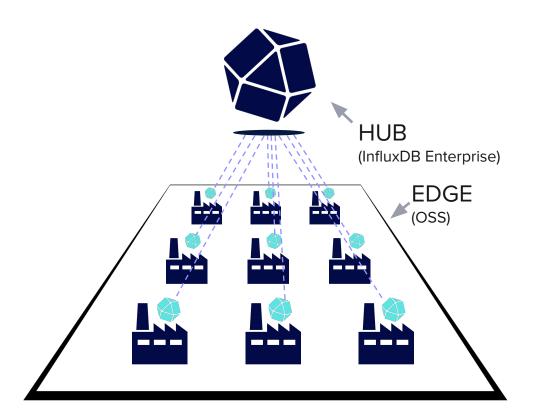
- Enable Predictive Maintenance
- Improve Profitability



IIoT Partnerships & Integrations



Reference IIoT Architecture with InfluxDB



Modern data historian use case

InfluxDB Edge Data Replication

✓ Remove Data Silo's

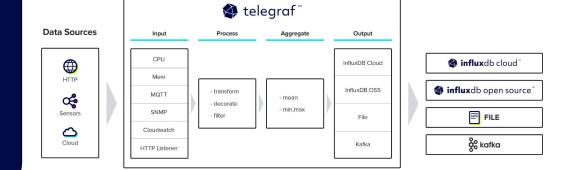
Avoid data scattering, discrepancies and maintenance issues

✓ Data Access Simplified

Replace data cherry picking with a 'single pane of glass' integration point for reporting and analytics workloads

✓ Enhance Security

Remove bandwidth and firewall / security concerns with multiple connections to the edge / OT


✓ Lightweight Edge

Reduce the resource requirements of your edge instances to save on infrastructure spend and complexity

Telegraf Plugins

With our Open Source Telegraf Agent, Customers are able to <u>Accelerate Time to Value</u> by utilizing MQTT, OPC-UA or any of the 300+ plugins offered to collect metrics from their sensors, OT machines and devices, at granular frequencies.

Customer Use Case

Mining

6

Problem: Need more accessible data for incident analysis & maintenance optimization

- Monitoring of mobile and static assets across the Western Australia iron ore mines
- Mandate to provide more useful and accessible data to the business by the end of 2024 to optimize maintenance costs
- Drowning in data: 50+ analysts in HQ consuming data from numerous OEM siloed systems

InfluxDB Results

- Eliminated costs associated with using 3rd party OEM solutions, including integration fees.
- Able to scale data ingestion to support 1,300 assets and support real time alerts and operations
- Unlocked 8 new use cases that were never before possible including real time fuel monitoring (supporting their net zero goals).

Problem: performance and high-volume data handling required to power customer-facing dashboards and queries

- Data collected from multiple sources sensors, manufacturing systems, utilities, weather
- Customers rely on dashboards, alerts and advanced analytics to change operations
- Performance and ingestion limitations with InfluxDB OSS and PAYG Cloud Serverless

InfluxDB Results:

- Realtime ingest/visualization of 35K values / second with capacity to increase customer base
- 6X query performance improvements over serverless
- DataFusion UDF customer identified DF bug & made fix themselves, plans for more UDF's

Beverage Manufacturing

Problem: data silos made it impossible to uncover causes of increased cost per unit

- Too difficult to work with data from each of the machines used on the floor - over 2000 machines from 95 breweries.
- Evaluated AWS Timestream but it could not handle large query volume in a performant way.

InfluxDB Results

- Ingesting data from 95 breweries and over 2000 machines, on their way to 160 breweries
- Able to handle 400M+ queries / month
- Through improvements in power, packaging, cleaning and maintenance process, improved operational efficiency by 1% which translates into \$20M
- Influx plays a key role in hitting their next goal which is a 3% increase in operational efficiency

31 | © Copyright 2023, InfluxData

Useful Links

InfluxDB 3.0

Request a Proof of Concept

sales@influxdata.com

Aircraft Manufacturing

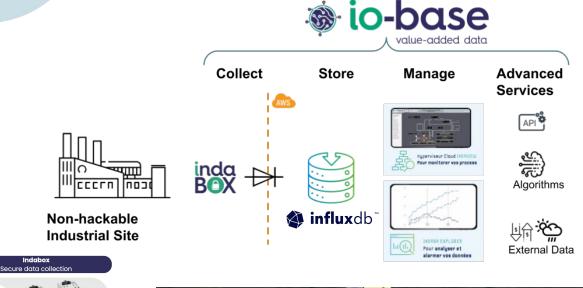
Problem: data historian and machine-specific monitoring tools can't handle data volume

- potential for millions of dollars in aircraft repair work, scrapped work, and delayed delivery due to tiny variations in conditions
- AVEVA Wonderware + machine-specific monitoring failed to keep up volume and query performance.
- Unable to provide the factory-wise view

InfluxDB results:

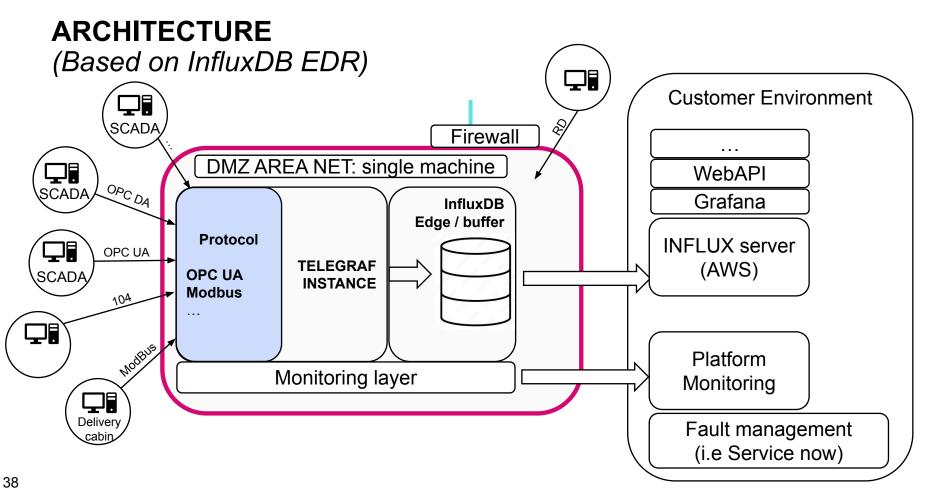
- Team is now monitoring more than 3000 parameters / second in one factory-wide view
- Met stringent security and compliance requirements for both commercial and military clients

(....)

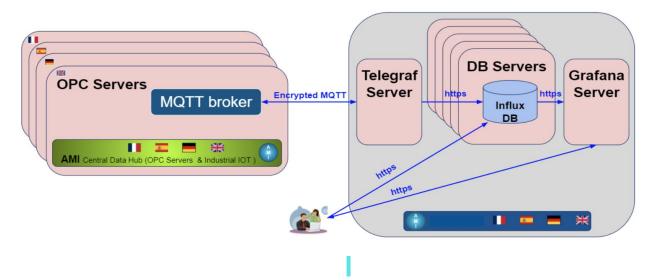


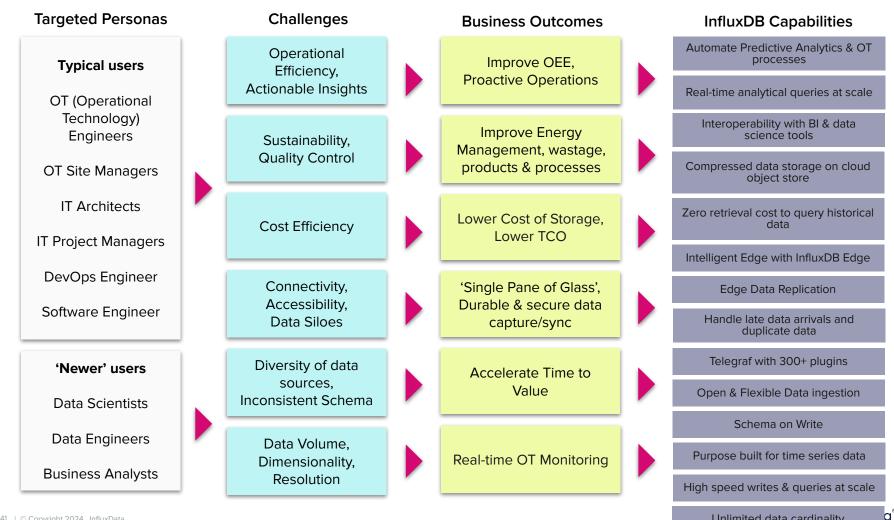
IO-Base now

> secure by desig


Secure, Performant, Agile, Industrial Data Twin platform

- → Centralized master data
- Minimum onsite infrastructure: only collection/transmission - no maintenance
- → Ease of data sharing
- → Hardware / network agnostic
- → Highest level of cyber-security

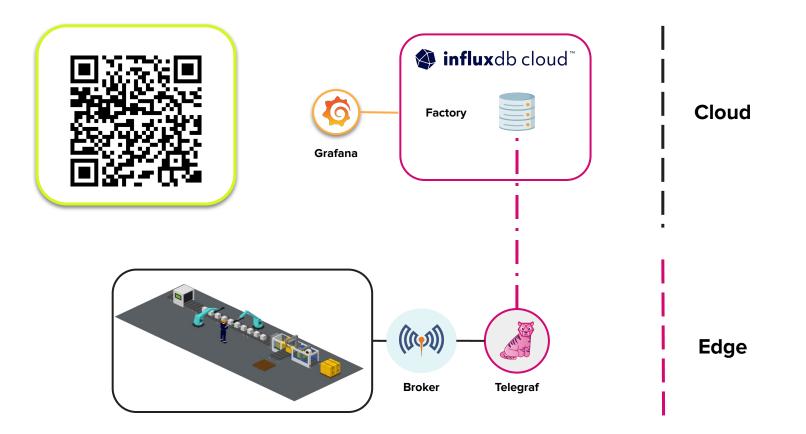

FTSE 500 Energy Company


FTSE 500 Aerospace Company

- Smart factory IIoT use case
- Globally distributed plant network
- with scalable MQTT-based ingestion architecture

Time Series Database Pros for IIoT

- 1. **Cloud-native, modern** and **open technology** supports the Industry 4.0 transition
 - a. Application versatility
 - b. Development agility
 - c. Easy integrations and ecosystem support (APIs, connectors, protocols, tools)
- 2. Flexible query language and advanced analytics capabilities
- 3. Excels in real-time processing
- 4. Cost efficient and scalable commercial model
- 5. Scalability and storage efficiency



InfluxDB Addition Pro's for IIoT

- 1. Supports massive scale, incl. Unlimited cardinality
- 2. Hybrid deployments (edge, on-prem, cloud)
- 3. Edge Data Replication (store-forward) capabilities
- 4. Flexible schema-on write
- 5. Hot and cold storage tiers
- 6. Vast **community** and network of **integrations** and partners
- 7. Many more...

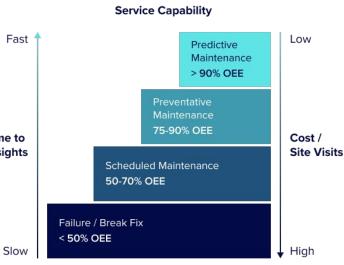
Operational efficiency

Data Analytics & insights

Customisation & flexibility

Quality control

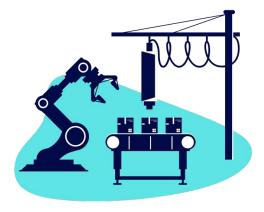
Supply chain optimisation


Workplace safety

Connectivity & collaboration

Energy & sustainability

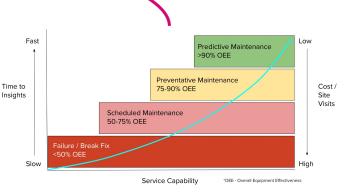
Cost controls & efficiency


*OEE - Overall Equipment Effectiveness

≻ IoT

- Cloud computing
- ➤ Edge computing
- ➤ 5G networking
- \succ AI and ML
- > Cybersecurity
- > Digital twins
- > Real-time analytics

- ✓ Operational efficiency
- ✓ Data Analytics & insights
- ✓ Customization & flexibility
- ✔ Quality control
- ✓ Supply chain optimisation
- ✔ Workplace safety
- ✓ Connectivity & collaboration
- Energy & sustainability
- ✔ Cost controls & efficiency



> IoT

- Cloud computing
- ➤ Edge computing
- ➤ 5G networking
- \succ AI and ML
- > Cybersecurity
- > Digital twins
- > Real-time analytics

- Operational efficiency
- Data Analytics & insights
- ✔ Customisation & flexibility
- ✔ Quality control
- ✓ Supply chain optimisation
- ✔ Workplace safety
- ✓ Connectivity & collaboration
- Energy & sustainability
- ✔ Cost controls & efficiency

