
How Robinhood Built a Real-
Time Anomaly Detection
System to Monitor and
Mitigate Risk

Allison Wang

Software Engineer, Robinhood

A n I N F L U X D A T A C A S E S T U D Y

OCTOBER 2019 (Revision 1)

Robinhood’s story began at Stanford,

where co-founders Baiju and Vlad were

roommates and classmates. After

graduating, they packed their bags for

New York City and built two finance

companies, selling their own trading

software to hedge funds. There, they

discovered that big Wall Street firms

were paying next-to-nothing to trade

stocks, while most Americans were

charged commission for every single

trade. So they decided to change that,

and headed back to California to build a

financial product that would enable

everyone — not just the wealthy —

access to financial markets.

A pioneer of commission-free investing,

Robinhood is on a mission to

democratize finance for all and believes

the financial system should be built to

work for everyone. That’s why the

company creates products that let you

start investing at your own pace, on your

own terms.

Robinhood is democratizing the financial

systems by offering commission-free investing

and trading with the use of your phone or

desktop. As exciting as that sounds to the

outside world, internally, the team at

Robinhood had to understand the different

risk vectors and build engineering solutions to

mitigate these risks. To build a real-time risk

monitoring system, Robinhood chose InfluxDB

(an open source time series database written

in Go) and Faust (an open-source Python

stream processing library for Kafka streams).

The architecture behind the system involves

both time series anomaly detection (InfluxDB)

and real-time stream processing (Faust/Kafka)

setups.

Case overviewCompany in brief

1

https://www.influxdata.com/products/influxdb/
https://github.com/robinhood/faust

To monitor and mitigate risk, Robinhood wanted to set up intelligent, real-time alerts on

critical metrics without the need for constant manual dashboard tracking. Faced with a

large volume of metrics, engineers and IT operations teams need a smart, automated way

to detect anomalies in time series so that they can quickly assess risk. Since staring at a

screen to track thousands of time series 24/7 to take immediate action isn't practical or

scalable, Robinhood needed to build an anomaly detection system.

The business problem

2

As the number of time series grows, the amount of effort
needed to understand or to detect anomalies in a time
series becomes extremely costly. That is why we started
to build an anomaly detection system that can
intelligently alert us when something doesn't go very
well.”

“

Allison Wang, Software Engineer

To solve their business challenge, the first anomaly detection solution that Robinhood

tried was threshold-based alerting, by which an alert is triggered whenever the underlying

data is over or under the threshold, as shown below.

Threshold-based alerting works well with simple time series (for example, to detect

whether the amount of CPU utilization is over 80% or the percentage of server currently

running is over 100%). But it fails to account for more complex time series involving

seasonality and trends. As shown above, the time series has an upward trend, and within

that upward trend, there are up-and-down patterns.

Using the fixed threshold to alert on anomalies doesn't work well because the time series

will go over the threshold and trigger an alert, but will then drop down a threshold and go

over a threshold again. So threshold-based alerting in the case of complex time series

would require the same effort as checking the dashboard 24/7. Therefore, they needed

an anomaly detection algorithm.

The technical problem

3

Threshold-based alerting

They sought to leverage historical data to determine — given an incoming data point —

what a reasonable threshold would be, in order to define the anomaly state. So, they

resorted to a concept derived from statistics called normal distribution. The idea behind

normal distribution is that given a list of data, you can compute the mean, and the

standard deviation of the data points. To put the normal distribution concept to work for

their purpose, Robinhood alerted on data outside of three standard deviations:

 1σ - 68.27

 2σ - 95.45

 3σ - 99.73%

Creating an anomaly detection algorithm

4

An example of data with a normal distribution. Data that is outside of three standard

deviations away from the mean (shaded with green lines) accounts for only 0.03% of

all of the data.

Here's how the normal distribution concept can be applied to anomaly detection. If you

have a stream of data coming in, you can:

 Bucket those data points within a very small time interval, such as a minut

 Construct normal distribution for every minute in the day for the past 30 days

Defining your threshold from a standard deviation for anomaly detection is advantageous

because it can help you detect anomalies on data that is non-stationary (such as in the

example above). The threshold defined by a standard deviation will follow your data’s

trend. Since Robinhood defined an anomaly as anything outside of three standard

deviations away from the mean, this meant 99.7% of the data lies within this range.

Bucketing data points

5

For example, they count the number of data points coming in within the first minute and

the second minute, which is 26, for example. Then they count the second and third

minute — and the third and fourth and so on. Once they have an aggregation, they apply

it to the data point that is over the past 30 days. This is how they get a list of aggregated

data points for every minute in the day for the past 30 days.

They utilize the time series that they aggregate to compute the mean and the standard

deviation over the past 30 days and use that as a boundary for a time series threshold.

After computing the threshold, whenever there's a new data point coming in, they can

compare the number with the threshold. If the incoming data point is over the threshold

or under the threshold, then they alert. This is the idea behind anomaly detection using

data in the past.

6

Now that they set an anomaly detection algorithm, the next step was to productionize the

algorithm in their system so that they can automate alerting.

As they wanted to monitor time series data, they realized they needed a time series

database that would meet their system requirements

 A database for fast time series data ingestion and aggregatio

 A system for querying and computing anomaly in real tim

 Visualization and alerting capabilities

7

Checking if the incoming data point (aggregated) is in the range (μ - 3σ, μ + 3σ)

8

After considering Prometheus, Elasticsearch, OpenTSDB, Postgres, they chose InfluxDB

as their time series database. Robinhood Engineer Allison Wang had first encountered

InfluxDB as a student at Carnegie Mellon University (CMU), where InfluxDB creator Paul

Dix gave a talk titled “lnfluxDB Storage Engine Internals” discussing time series

databases, the Time-Structured Merge Tree (the InfluxDB storage engine written from

scratch), InfluxDB 2.0 and Flux. Two years following that talk, everything he mentioned

during it has become part of the actual Robinhood system.

The solution

Why InfluxDB?

InfluxDB has a very awesome stack, which gave us
everything we needed when constructing the system.”
“

9

Below are the attributes that led Robinhood to choose InfluxDB:

 Lightweight: InfluxDB is very lightweight. Compared to OpenTSDB, a database built

on top of Hbase (which requires the Hadoop ecosystem to be set up), InfluxDB

doesn't require any third party or other system to set up in order to run in production.

You can download InfluxDB from GitHub or run it in a Docker container, spin up an

instance and see how it operates.

 Schemaless: InfluxDB is schemaless. Whereas Postgres has a very strong schema

(where you need to define the schema before you can build a table, ingest the data,

and update a table), InfluxDB doesn't require having a schema beforehand and

therefore reduces the overhead of doing a schema migration whenever the fields

change

 Allows indexing via a specific field in the data: In Robinhood’s system, as time series

data streams into the system, there are multiple fields (for example, a field called

createdAt or updatedAt). These time series need to be indexed using different

timestamps that are presented in the time series or in the original data point. They

tried using Prometheus as a push-based system with exporters to fetch metrics from

non-Prometheus systems. This didn’t serve their purpose because when exporters

detect or export the data, it gets indexed into Prometheus the time that it is ingested

into the database. So it's very difficult to use one of the fields that are originally inside

of the time series to index the data into the time series database. In contrast, InfluxDB

allows doing that by changing the time column, making it easy to select which field to

use in order to index the data into the time series database

 Fast data ingestion (write) and aggregation (read): A real-time system requires

ingestion of upstream data in real time, as well as querying data out of that database

in real time. So they needed a database that can do the ingestion and aggregation

simultaneously. Robinhood found that though Elasticsearch has a high read speed, it

has a larger overhead than InfluxDB when you want to ingest and aggregate data

simultaneously.

10

 High availability (InfluxDB Enterprise): Robinhood found the Enterprise version of

InfluxDB (InfluxDB Enterprise) to be fault-tolerant. Using the Enterprise version was

absolutely a requirement for them to avoid the risk of having one server crash and

thereby cause the entire database to crash.

 InfluxDB Stack (Kapacitor, Chronograf, Telegraf): They use Kapacitor for alerting,

Chronograf to explore the data and to plot the different time series on top of InfluxDB,

and Telegraf to send time series data from different sources to InfluxDB.

 Community: InfluxDB has a large and active community that can answer their

questions.

Next, Robinhood needed a mechanism to query data out of InfluxDB to compute the

mean and standard deviation.

Real-time stream processing

For this purpose, they use a real-time stream processing system open-sourced by

Robinhood and called Faust.

Faust, a Python version of Kafka Stream, sends queries and runs the anomaly detection

algorithm for Robinhood. Faust is:

 Performant (utilizes the Python 3 Asyncio format

 Fault-tolerant (RocksDB, a high-performance embedded database for key-value data

 Scalable (has Kafka as its underlying structure)

Building an end-to-end anomaly detection system

https://www.influxdata.com/products/influxdb-enterprise/
https://www.influxdata.com/products/influxdb-enterprise/
https://www.influxdata.com/time-series-platform/

11

The Faust function that they leverage to send the query to InfluxDB to retrieve data is

called a timer (see @app.timer above). They set an interval that represents the frequency

for the timer task to run, and schedule a lot of tasks. Whenever the scheduled interval is

reached, the timer will execute this function. For example, hello.send, influxdb.query will

query InfluxDB, construct the query, and render the time series data that they need to be

able to detect anomalies.

12

Below is a diagram of how Robinhood combines Faust with InfluxDB.

 Faust, through its timer function, continuously sends queries to InfluxDB, which returns

data points.

 They can compute the mean and standard deviation, and compare the pre-computed

threshold with the actual data points that they ingest.

 If either is outside the range, they can send that result back to Kafka, which can in turn

be ingested back into InfluxDB and alerted with Kapacitor.

Technical architecture

13

They have a large volume of time series in Kafka, a pub/sub stream processing engine. To

move this time series data to InfluxDB, they ingest it through Logstash (a piece of

infrastructure they already had set up) and Telegraf, which together can be thought of as

the connector piece in their architecture. Telegraf has an input plugin where you can

specify which Kafka topic to ingest or consume from; it can do certain transformations,

output to InfluxDB, and specify which build you want to be indexed (for example,

updatedAt or createdAt depending on the use case).

Data ingestion

14

Visualization

In their production system, they use Grafana (to build the dashboard that combines the

data that they query from multiple databases) and Chronograf (to quickly construct a time

series).

 The aggregated data (yellow) is bounded by upper and lower limits (blue)

 The yellow line is the actual data that they aggregated.

 The blue shades represent the upper and lower bounds of the time series.

15

Boundary visualization in Grafana: Example of infrastructure telemetry collected with InfluxDB by Robinhood

The graph above shows the aggregation by minute — each individual point over is the

amount of data that they have over the past minute. On the very right-hand side, the

yellow dot represents an anomaly that occured and that needs to be alerted on. The

above graph is created through Grafana’s boundary graph feature, which allows drawing

the shape within a boundary. By shipping data to Kafka and including the boundary points

in Grafana, they can visualize their metrics.

Alerting

After they identify the anomaly, and in order to alert on the downstreams, they leverage

Kapacitor. Kapacitor allows

 Defining the rule based on TICKscript (an invocation chaining language used to define

data processing pipelines)

 Alerting and configuring which downstream services should receive the alert.

https://docs.influxdata.com/kapacitor/v1.5/reference/spec/

16

They use Opsgenie for serious alerts and Slack for a status update.

High-level system architecture

The diagram below shows a high-level view of Robinhood’s architecture:

17

 Time series data in Kafka gets ingested through Logstash into InfluxDB.

 Grafana is connected to InfluxDB to visualize the time series.

 Kapacitor is used as an alerting service.

 Faust computes and determines whether the incoming data point is abnormal.

The anomaly detection algorithm covered above is just one of many they can use to

detect anomalies. Others include algorithms in Kapacitor's anomaly detection library as

well as the Holt-Winters function included in InfluxDB. Since they use Faust, which is built

on top of Python, they can easily send their time series data into machine learning

libraries to detect anomalies. They can import Scikit-learn, Numpy, Pandas, PyTorch, and

TensorFlow. They can also deploy deep learning algorithms using LSTM.

Results

Without InfluxDB, we wouldn't have been able to build a
system in such a short period of time and to have the
system running in production so well.”

“

18

 Lightweight - they were able to build a system in a very short perio

 Extensible - you can use different kinds of anomaly detection based on your business

need

 Horizontally scalable - each piece in their architecture is horizontally scalable, which

means if the system load increases, you can add more servers, and it can handle the

workload even if it involves a hundred times more time series.

This use case was first presented by Allison Wang at InfluxDays San Francisco 2019.

https://www.influxdays.com/past-events-san-francisco-2019/sessions/

19

InfluxData is the creator of InfluxDB, the leading time series platform. We empower

developers and organizations, such as Cisco, IBM, Lego, Siemens, and Tesla, to build

transformative IoT, analytics and monitoring applications. Our technology is purpose-built

to handle the massive volumes of time-stamped data produced by sensors, applications

and computer infrastructure. Easy to start and scale, InfluxDB gives developers time to

focus on the features and functionalities that give their apps a competitive edge.

InfluxData is headquartered in San Francisco, with a workforce distributed throughout

the U.S. and across Europe. For more information, visit influxdata.com and follow us

@InfluxDB.

About InfluxData

Contact us for a personalized demo influxdata.com/get-influxdb/

Try InfluxDB

Get InfluxDB

https://www.influxdata.com/
https://twitter.com/influxdb
http://influxdata.com/get-influxdb/
http://influxdata.com/get-influxdb/

