

Company in brief

Real-Time Innovations (RTI) is a connectivity middleware market leader. It is the largest embedded

middleware vendor* and has over 70% of the commercial DDS market share. RTI is also a leader in

standards activity, active in 15 standards bodies and a Data Distribution ServiceTM (DDS) standard

author. RTI serves on the boards of prominent industry organizations such as Object Management

Group® (OMG®) Board of Directors and Industrial Internet Consortium (IIC) Steering Committee. RTI is a

mature leader, with 1,350+ commercial designs and 500+ research projects.

The RTI Connext® databus is a software framework that shares information in real time, making

applications work together as one integrated system. It connects across field, fog and cloud. Its

reliability, security, performance and scalability are proven in the most demanding industrial systems.

Deployed systems include medical devices and imaging; wind, hydro and solar power; autonomous

planes, trains and cars; traffic control; oil and gas; and robotics, ships and defense. RTI is privately held,

with headquarters in Sunnyvale, CA and Granada, Spain.

Case overview

RTI needed to build a monitoring solution that would meet the unique architectural requirements of

monitoring Industrial Internet of Things (IIoT) data for its industrial customers. The IIoT is transforming

industries across the board by infusing and connecting billions of connected devices with digital

intelligence. Through low-cost computing and networking, today’s systems enable far greater amounts

of data, at far greater speeds, to be connected throughout distributed systems. As the amount of data

increases exponentially, however, there needs to be a new way to monitor it in real time without

overwhelming existing systems.

Building a monitoring architecture for IIoT requires a collective software stack for data collection,

storage, analysis and visualization. In today’s connected world, however, the software components of

the monitoring framework may be deployed in a distributed manner and over geographically-dispersed

locations, requiring them to be seamlessly integrated over multiple networks.

RTI uses InfluxDB in IIoT system monitoring. They created an architecture that meets the software

framework requirements by combining the capabilities of the The Object Management Group (OMG)

Data Distribution Service™ (DDS) standard for real-time data exchange with InfluxDB. DDS is a

middleware protocol and API standard that provides data connectivity, extreme reliability and a scalable

architecture to meet IIoT application requirements.

2 / 28

The time series monitoring architecture that RTI built over WAN uses the Telegraf plugins they

developed for Connext DDS. The Telegraf plugin monitors and provides alerts throughout distributed

IIoT systems.

“IIoT requires a scalable, data centric approach. Data
Distribution Service (DDS) is the standard published by the
Object Management Group that accommodates this.”

Lynne Canavan, Director of Ecosystems, RTI

The business problem

RTI, known as the Industrial Internet of Things (IIoT) connectivity company, needed to solve the IIoT data

challenges of its industrial clients across various sectors. As the IIoT disrupts our world, it brings with it

the challenges of data processing at scale, security and precision. Called by some the fourth industrial

revolution or the era of smart, connected machines, IIoT is a trillion-dollar market opportunity that’s

going to be large and impactful.

3 / 28

IIoT spans different industries – from healthcare to energy, from manufacturing to transportation – that

all share some common attributes with regard to their IIoT implementations.

IIoT use cases across sectors share certain attributes

IIoT solutions need to be:

● Robust and reliable — there’s no room for error in IIoT environments.

● Secure — to protect not only from external threats, but also against internal errors.

● Able to process massive data in real-time — they require a high-performance architecture

that is scalable, secure and reliable with very low latency.

The above requirements are the IIoT requirements that RTI needed to meet for its customers through a

suitable monitoring architecture based on DDS.

Technical problem

There are key differences between IoT and Industrial IoT architectures. The architecture that runs a Nest

thermostat or personal fitness device simply cannot accommodate the requirements and scale of IIoT.

IIoT requires a scalable, data-centric approach. Data Distribution Service (DDS) — for which RTI is the

largest commercial vendor — is the standard published by the Object Management Group that

accommodates this approach, through a central databus structure.

4 / 28

IIoT requires scalable, highly reliable data connectivity

RTI Connext Databus is a data-centric framework that develops and runs complex distributed

applications. It integrates data in motion from associated applications and tools, which eliminates major

bottlenecks and single points of failure (critical for IIoT applications).

Here it’s important to note the difference between message-centric and data-centric protocols:

● A traditional message-centric middleware requires writing code that sends messages (a specific

code).

● DDS is data-centric — with DDS, the programmers instead write code that specifies how and

when to share data, and then directly share data values.

RTI Connext Databus: a real-time, data-centric connectivity framework

5 / 28

Rather than managing the complexity in your application code, DDS enables controlled, managed,

secure data sharing for specific integration points.

With DDS, applications do not need to deal with data serialization and de-serialized data because they

are communicating through data, not messages. Application code is much simpler because all the parts

are provided by DDS. DDS architecture is fully distributed peer-to-peer and is designed for real-time

and low-latency communication. So there is no broker between the publisher and subscriber.

Below are two real-world examples of how a DDS-based connectivity framework can help in a

real-world IIoT setting:

● A hospital operating room is typically full of equipment, but even today, with all the tech

available — most of those equipment pieces do not communicate with each other. That can

lead to Iatrogenics (hospital error, the 3rd leading cause of death).

Picture taken in an actual operating room

Connected medical devices can help reduce this problem by correlating data from different medical

devices; for example, if an infusion of medicine starts, and the patient’s blood pressure or oxygen levels

drop. Those are separate machines, but through DDS, can be correlated. Connected IIoT systems can

flash alarms indicate the need for immediate action rather than manually monitoring single machines.

The amount of data coming from the patient — multiplied for every bed and every surgery unit in the

hospital — becomes massive. The below figure shows a layered databus – taking the databus presented

above, and adding in the layers that connect from the edge to the cloud. On the bottom layer, in one

6 / 28

room, the DDS databus allows the medical devices to talk to each other. That is then connected to the

nurses’ station, and up to the IT / cloud layer at the hospital. The data flow is contextually appropriate

and scalable — with no single point of failure.

Healthcare IIoT: Smart, Connected, Reliable

The same applies to autonomous vehicles — massive data that needs to be communicated rapidly, to

and from lots of sources. The vehicle is receiving LiDAR data (LiDar is a surveying method that

measures distance to a target by illuminating the target with laser light and measuring the reflected

light with a sensor). The vehicle is also receiving traffic data. A lot of data is coming into the vehicle and

has to arrive in real-time and to be reacted to quickly. Through the central Connext Databus, you

connect to all that is happening in the car and around it. Below is a sample auto architectural databus.

7 / 28

https://en.wikipedia.org/wiki/Surveying
https://en.wikipedia.org/wiki/Laser

Autonomous vehicles: sensor-to-cloud connectivity

Each vehicle needs a databus for communication between sensors and vehicle drivers, and between
vehicles themselves.

The solution

“InfluxDB supports built-in time series functions that can
select and aggregate or even predict metrics. These time
series functions are essential to normalize and analyze an
enormous amount of data collected for monitoring and
alerting.”

Kyoungho An, Senior Research Engineer, RTI

Why InfluxDB and Telegraf?

RTI decided to use the InfluxDB stack for its RTI Connext DDS. They use the InfluxDB time series

database (for IIoT system monitoring) and InfluxDB’s agent Telegraf (for collecting metrics and events).

Both are open source and publicly available for download and deployment.

8 / 28

RTI came to know InfluxDB while exploring time series monitoring technology for a research project

funded by the Department of Energy to develop system management capabilities for the Microgrid

standard called Open Field Message Bus. At the time, they looked into other microgrid technologies, but

decided to use InfluxDB because it is purpose-built for time series data, and since monitoring data is

time series data.

These are the reasons why they decided to use Telegraf:

● Push-based metric collection, which is a better fit for DDS (which uses event-based pub/sub

model)

● Many out-of-the-box plugins for system monitoring (which makes it easy to collect from

diverse sources for system value chain and easy to extend)

● Mature and widely adopted open source technology with commercial offering/support

● They realized they could easily build a Telegraf plugin for DDS without paying InfluxDB or having

to wait for their roadmap to accommodate building one. This is why open systems are

important.

InfluxDB integrates with Connext DDS through the Telegraf plugins for Connext DDS that RTI built.

Benefits of using DDS and InfluxDB

InfluxDB platform architecture

9 / 28

Telegraf provides 200+ plugins contributed by the community and has a very strong ecosystem. You

can collect metrics from diverse sources and provide collective metrics to many destinations.

Additionally, InfluxDB supports built-in time series functions that can select and aggregate or even

predict metrics. These time series functions are essential to normalize and analyze an enormous

amount of data collected for monitoring and alerting.

Example of built-in time series functions in InfluxDB

Lastly, InfluxDB is well-integrated with visualization tools, like Grafana and Chronograf. Specifically, with

Grafana, there are many freely available dashboards for InfluxDB and Telegraf.

10 / 28

RTI Connext DDS is the first connectivity framework designed for the demanding requirements of the

IIoT. Based on the Connext Databus, RTI’s software allows applications to exchange data in real time

and provides the non-stop availability and security essential for mission-critical systems.

RTI Connext DDS software includes the world's leading implementation of the Object Management

Group (OMG) Data Distribution Service (DDS) standard. DDS is the only open standard for messaging

that supports the unique needs of both enterprise and real-time systems. Its open interfaces and

advanced integration capabilities slash costs across a system's lifecycle, from initial development and

integration through ongoing maintenance and upgrades.

Technical architecture

“The Telegraf plugin for Connext DDS enables the monitoring
architecture with DDS and InfluxDB.”

Kyoungho An, Senior Research Engineer, RTI

The architecture with RTI's Connext DDS and InfluxDB

11 / 28

http://portals.omg.org/dds/

The above figure shows the architecture of the integration of Connext DDS and InfluxDB. The key

component to realize this architecture is the Telegraf plugin for Connext DDS. With this architecture,

metrics and logs for systems and applications can be sent and received over Connext DDS databus.

Then, the received metrics can be provided to InfluxDB for visualization and alert tools like Grafana.

DDS overview and terminology

The below diagram describes the key architectural entities of DDS. Since DDS adopted the publish/

subscribe model, DDS applications can communicate through DDS published and subscribed entities,

which are data writers for publication and data readers for subscription. Here’s how this communication

works.

DDS Terminology

● If data writers and readers use the same topic, then they can exchange a structured topic data.

● Multiple writers and readers can be grouped under a publisher or a subscriber.

● A participant can create multiple publishers and subscribers.

● DDS data domain is a logical communication environment used to isolate network

communications of DDS participants – only participants using the same domain_ID can

communicate with each other.

DDS concepts can be explained better with some InfluxDB concepts. Within a DDS domain, topics exist.

A topic can be a database table, that can be written or read by a data writers or data readers. It can be a

similar concept to the measurement name in InfluxDB. Within a DDS topic, it has a sample of data and

has a set of fields, like metric data in InfluxDB. Within a single topic, samples can be grouped and

identified by key fields, which can be equivalent concepts to a tag name. DDS instance is the identifier

12 / 28

of sample streams in a topic and can be a similar concept to a tag value. This analogy helps to

understand DDS concepts from InfluxDB's perspective.

Mapping of DDS and InfluxDB Concepts

DDS design and features

First, DDS is fully distributed (there's no broker between publishers and subscribers) and supports
decoupled interactions. So the publisher and subscribers directly communicate with each other. This
allows achieving very high throughput and low latency, without a single point of failure or bottleneck.

As shown in the figure below, DDS applications declare intents to publish or subscribe to a topic. This
does not require prior knowledge of each other. So publishers and subscribers can join anytime from
any place. This decoupling can greatly reduce integration effort.

13 / 28

DDS is fully distributed and supports decoupled publish/subscribe communications

DDS is data-centric. This means that publishers and subscriber exchange strongly-typed data, not

messages. With that, DDS can support content-based filtering on the publisher side. For example, a

subscriber can declare content filters; such as wanting to receive temperature data above a certain

threshold. Then a publisher delivers the data only within that threshold. This will be quite useful to

improve efficiency in an environment having a limited network bandwidth.

DDS is data-centric and supports content-based filtering

DDS provides more than 20 standard configuration parameters for data delivery, resource usage, etc.

These parameters are called Quality of Services (QoSs). Among them, the most interesting are reliability,

durability, and history QoS.

14 / 28

DDS can control data flows and resource usage

DDS supports multiple transports, including shared memory UDP and TCP. The default transport of DDS

is UDP, which does not have a reliable mechanism for data transmission. But with DDS reliability QoS, it

can deliver data in a reliable way on top of UDP, if it is set to reliable.

At a high level, with DDS reliability QoS, if data is delivered, a subscriber responds with an Ack message

to the corresponding publisher. If not, the subscriber responds with a Nack message to request to send

the data again. Then, the publisher resends the missing data. DDS QoS policies are configurable. You

can set it to either, for example, reliable or best effort, depending on your use case.

15 / 28

DDS supports reliable delivery on top of UDP and multicast

DDS can deliver historical data for late joiners with durability QoS. So a persistent publisher keeps

historical data. When a late-joining subscriber joins the system, it can deliver the historical data stored

in its historical buffer.

DDS can deliver historical data for late joiners

You can configure historical data to be stored either in memory or persistent storage. The size of buffers

can also be configured through history QoS, so you can control the amount of historical data that you'd

like to persist.

16 / 28

Telegraf plugins for RTI Connext DDS

RTI developed three Telegraf input plugins and one Telegraf output plugin:

Input Plugins

● DDS Consumer (can read DDS data in any DDS data types)

● DDS Consumer with the Line Protocol data model (can read DDS data with a specific data

model, developed based on the Line Protocol format)

● DDS Monitor (can read monitoring data for these DDS applications). DDS uses DDS itself to

send its monitoring data, such as how many samples were sent or received, or are there any

missing or rejected samples. Those types of metrics can be collected. And we can use Telegraf

for collecting that data.

Output Plugin

● DDS Producer with the Line Protocol data (can get metrics from any Telegraf input plugins

and publish them with the data model based on the Line Protocol format)

RTI developed multiple input plugins because DDS data samples are strongly typed, and they wanted to

support ingesting data from:

● Any DDS applications (application-specific data types)

● Telegraf plugins (Line Protocol data type)

● DDS monitoring entities (DDS monitoring data type)

As the below figure shows, RTI uses Telegraf to:

1. Support getting data from DDS applications, with application-specific data types. DDS

Consumer needs to provide a way to define DDS data types by users, and convert this data to

the format that Telegraf can understand.

2. Subscribe to data from DDS monitoring entities, which are mainly for monitoring

DDS-specific metrics.

3. Send metrics from existing Telegraf input plugins (such as CPU, memory and network),

which required RTI to develop their data type based on the Line Protocol format.

17 / 28

How RTI Connext DDS uses Telegraf

How the DDS Consumer plugin was implemented

To explain the plugin’s implementation, it’s important to first introduce the RTI Go Connector, which was

used to create and access DDS entities for developing Telegraf plugins.

RTI Go connector is a simplified API for DDS application development in Go programming language. It is

built on top of DDS C API, with cgo, which is a way to call C code from go. RTI connector was developed

by the RTI research team and is freely accessible in the RTI community GitHub.

The DDS Consumer plugin, which can subscribe to any DDS applications with application-specific data,

is developed as a service input plugin.

type ServiceInput interface {
Input

// Start the ServiceInput.
Start(Accumulator) error
// Stop stops the services and closes any necessary channels and

connections
Stop()

}

Telegraf provides plugin API, and RTI leveraged a service input plugin API to develop the DDS Consumer

Plugin because this plugin creates a thread to handle DDS samples when they arrive. A service input

18 / 28

https://github.com/rticommunity/rticonnextdds-connector-go
https://github.com/rticommunity/rticonnextdds-connector-go
https://godoc.org/github.com/influxdata/telegraf
https://godoc.org/github.com/influxdata/telegraf
https://godoc.org/builtin

plugin API has additional interface functions on top of the input plugin API. They include Start and Stop

functions:

● Most of the plugin implementation is included in the Start function, which is invoked when the

Telegraf plugin gets started.

● The Stop function is invoked when the Telegraf plugin is stopped. (In the current example, we

have to code for deleting DDS entities that were created for this plugin in the Stop function.

The Start function then:

● Creates DDS entities defined in our external configuration file (covered further below). The

connector function creates an RTI DDS connector object with a participant name and a path for

a DDS external configuration file.

● Can get the DDS reader with its name, by calling GetInput. It is also defined in an external

configuration and file, as well. The created connector and reader object pointers are stored in

the DDS consumer object. They are used to read DDS samples in the process functions.

● Starts a service thread for processing received DDS samples.

func (d *DDSConsumer) Start(acc telegraf.Accumulator) error {
// Create a RTI Connector
d.connector, err = rti.NewConnector(d.ParticipantConfig,
d.ConfigFilePath)
// Get a DDS reader
d.reader, err = d.connector.GetInput(d.ReaderConfig)
// Start a thread for processing DDS samples
go d.process()

Below is the code for the process function, by which a service thread reads and processes DDS data

samples from the reader and then processes and injects metrics to a Telegraf output.

// Take DDS samples from a DataReader and ingest them to Telegraf outputs
func (d *DDSConsumer) process() {
for {
d.connector.Wait(-1) // Wait until a new DDS sample arrives
d.reader.Take() // Take DDS samples
numOfSamples := d.reader.Samples.GetLength()

for i := 0; i < numOfSamples; i++ { // Iterate the DDS samples
json, err := d.reader.Samples.GetJSON(i) // Return a DDS sample in JSON
metrics, err := d.parser.Parse(json) // Parse the JSON object
// Add metrics to an output plugin

If multiple samples arrive, the function has to iterate them. Within the iteration, the DDS sample is

converted to a JSON object. Then the JSON object is parsed to a metric struc, resulting in a metric

object that you can pass on to an output plugin.

19 / 28

Thanks to all the functions provided by the plugin API and RTI Go connector, the plugin code is small

and simple, consisting of less than 200 lines of code.

How to use the input plugin

The DDS Consumer input plugin, as the other plugins, can be downloaded from the RTI Community
GitHub:

● A fork repository from Telegraf
● Installation
● How to use it
● Example configurations

Assuming that you downloaded and have a Telegraf executable, you first have to create an external
configuration file for DDS data types and entities.

Here is an example of a DDS external configuration file.

Creating an XML configuration file

<dds>
<!-- Data Types -->
<types>
<struct name="ShapeType" extensibility="extensible">

<member name="color" stringMaxLength="128" id="0" type="string"
key="true"/>
<member name="x" id="1" type="long"/>
<member name="y" id="2" type="long"/>
<member name="shapesize" id="3" type="long"/>

</struct>
</types>

First, the external file will include the definition of data types. For example, here, we have defined a data

type for a shape that includes four attributes, “color” in “string”;”x” and “y” coordinates in “long”; and

“shapesize” in “long”.

After you have a data type defined, you should define a DDS domain, which includes a domain_id
you'd like to participate (which is “0” in the below example). Within the domain definition:

● Register the data type you'd like to use. In the example, we registered the “ShapeType” defined

in the previous code example.

● Define a topic associated with the data type. You need to define DDS participants, subscribers,

and readers you'd like to create.

<!-- Domain Library -->
<domain_library name="MyDomainLibrary">
<domain name="MyDomain" domain_id="0">

20 / 28

https://github.com/rticommunity/telegraf/blob/master/plugins/inputs/dds_consumer
https://github.com/rticommunity/telegraf
https://github.com/rticommunity/telegraf#installation
https://github.com/rticommunity/telegraf#how-to-use-it
https://github.com/rticommunity/telegraf
https://github.com/rticommunity/telegraf/tree/master/example_configs

<register_type name="ShapeType" type_ref="ShapeType"/>
<topic name="Square" register_type_ref="ShapeType"/>

</domain>
</domain_library>

In this example, as shown in the code below:

<!-- Participant library -->
<domain_participant_library name="MyParticipantLibrary">
<domain_participant name="Zero" domain_ref="MyDomainLibrary::MyDomain">

<subscriber name="MySubscriber">
<data_reader name="MySquareReader" topic_ref="Square"/>

</subscriber>
</domain_participant>
</domain_participant_library>
</dds>

● We defined a participant named “Zero”, in the domain defined in the code example.

● Under that participant, we defined a subscriber named, “MySubscriber”.

● Under that subscriber, we defined a data_reader named “MySquareReader” that uses the

“Square” topic that was defined in the domain definition.

The above three steps complete recreating an external configuration file for DDS.

The next step is defining a Telegraf configuration file. Below is part of a Telegraf configuration file that

uses the DDS Consumer input.

Creating a TOML configuration file

[[inputs.dds_consumer]]
XML configuration file path
config_path = "example_configs/ShapeExample.xml"

Configuration name for DDS Participant from a description in XML
participant_config = "MyParticipantLibrary::Zero"

Configuration name for DDS DataReader from a description in XML
reader_config = "MySubscriber::MySquareReader"

Like other input configurations, you define the name of the input plugin (in this case, DDS_consumer).

Under that, there are specific configurations for this plugin.

● config_path is for defining the path for the external configuration file (discussed in the

previous section).

● participant_config is the full name of DDS Participant in the external configuration file. In

this example, the full name of the participant is “MyParticipantLibrary::Zero”.

21 / 28

● reader_config is the full name of DDS Reader in the external configuration file. In this

example, the full name of the reader is, “MySubscriber::MySquareReader”.

The above configurations are all you need for DDS configuration.

Additionally, as shown below in the code snippet below:

● You can optionally add some fields as tags (In the below example, a color field is added as a tag)

and also override the name of the measurement; otherwise, it will use the plugin’s name.

● You should use JSON as data format because the plugin code converts DDS samples to only

JSON format.

Tag key is an array of keys that should be added as tags.
tag_keys = ["color"]

Override the base name of the measurement
name_override = "shapes"

Data format to consume.
data_format = "json"

How the DDS Producer/Consumer plugins with Line Protocol data model
are implemented

Below is code to show how the DDS Producer/Consumer plugins, that are developed with a data model
based on Line Protocol format, are implemented.

struct Metric {
string name;//@key
sequence<Tag, MAX_TAGS> tags;
sequence<Field, MAX_FIELDS> fields;
long long timestamp;

};

https://github.com/rticommunity/telegraf/blob/master/plugins/inputs/dds_consumer_lp/line_protoc
ol.idl

type Metric struct {
Name string `json:"name"`
Tags []Tag `json:"tags"`
Fields []Field `json:"fields"`
Timestamp int64 `json:"timestamp"`

}

https://github.com/rticommunity/telegraf/blob/master/plugins/inputs/dds_consumer_lp/dds_consu
mer_lp.go

22 / 28

https://github.com/rticommunity/telegraf/blob/master/plugins/inputs/dds_consumer_lp/line_protocol.idl
https://github.com/rticommunity/telegraf/blob/master/plugins/inputs/dds_consumer_lp/line_protocol.idl
https://github.com/rticommunity/telegraf/blob/master/plugins/inputs/dds_consumer_lp/dds_consumer_lp.go
https://github.com/rticommunity/telegraf/blob/master/plugins/inputs/dds_consumer_lp/dds_consumer_lp.go

Like the DDS Consumer input plugin, the DDS producer/consumer plugins with Line Protocol data

model initially create DDS entities and then process DDS samples.

// Read a DDS sample
var m Metric
d.reader.Samples.Get(i, &m)

// Read tags from the DDS sample
tags := make(map[string]string)

for _, tag := range m.Tags {
tags[tag.Key] = tag.Value
}

// Read fields from the sample

fields := make(map[string]interface{})

for _, field := range m.Fields {

switch field.Kind {

case FIELD_DOUBLE:

fields[field.Key] = field.Value.D

...

// Add a metric to an output plugin

d.acc.AddFields(m.Name, fields, tags, time.Unix(0,

m.Timestamp))

How to use the DDS producer/consumer plugins with Line Protocol data

To use the DDS Producer/Consumer plugins with Line Protocol data, there is no need to create an XML
configuration file. The plugin source code includes the DDS XML configurations:

/// DDS XML configurations for the Line Protocol plugins
// Topic name is Telegraf and the type name is Meric
var xmlString = `
str://"<dds>
…</dds>"`
// Create a Connector object from the XML config
d.connector, err =

rti.NewConnector("ParticipantLib::TelegrafParticipant", xmlString)

Creating a TOML configuration file

Send metrics over DDS
[[outputs.dds_producer_lp]]
DDS Domain ID configuration
domain_id = "0"

Read metrics from DDS

23 / 28

[[inputs.dds_consumer_lp]]
DDS Domain ID configuration
domain_id = "0"

RTI Shapes demo

RTI Shapes demo is a tool you can use to learn about the basic and advanced concepts of DDS and to

see the Connext DDS and InfluxDB integration in action. You can create a publisher or subscriber with

your chosen DDS configurations. The demo shows how the DDS Consumer input plugin works, covering

two interesting DDS capabilities: delivering historical data for late joiners and content-based filtering. By

watching this demo, you can actually see the data that's working.

Integration of DDS systems over WAN

Routing Service enables seamless integration of DDS systems over WAN, as shown in the figure below:

● Telegraf in AWS Region 1 uses System input plugins (e.g. cpu, mem, net) and DDS producer

plugin with the Line Protocol format.

● Telegraf in AWS Region 2 uses DDS Consumer Plugin with the Line Protocol format and

InfluxDB output plugin.

24 / 28

https://www.rti.com/free-trial/shapes-demo

Results

“RTI Connext Databus enables applications to work together
as one, integrated system, significantly reducing development,
integration and maintenance costs.”

Lynne Canavan, Director of Ecosystems, RTI

By developing the DDS plugins, RTI has bridged two important technologies and opened very

interesting IIoT possibilities. RTI Connext DDS, which integrates with the InfluxDB stack, has proven

success in thousands of mission-critical systems including autonomous vehicles, connected medical

devices and next-generation energy systems. Below are some sample IIoT customer use cases made

possible by Connext DDS.

● Enabling large-scale system control

RTI Connext DDS reduces complexity for NASA’s Launch Control and Data Systems through a

DDS data exchange infrastructure that provides fault tolerance through passive process

replication, message traceability, persistence profile, and content subscription profile

capabilities.

● Advancing precision science

European Southern Observatory’s (ESO) new 39-meter Extremely Large Telescope (currently in

development) will be the world’s largest optical telescope. It precisely synchronizes hundreds of

servo mirrors and scientific instruments. RTI Connext DDS coordinates precise control and

measurement.

● Bringing autonomy to deep water

TechnipFMC does underwater robotics. Connext DDS allows the autonomous and the

semi-autonomous operation to work with things that are happening above sea level, as well. So

25 / 28

that through this instrumentation, there is a reliable, secure — that these robotics instruments

do not cause any damage down there but actually do what they're intended to do.

"When you are operating on critical infrastructure that is thousands of meters below the ocean's

surface, performance and reliability are crucial because the smallest mistake could lead to a

multi-billion-dollar disaster. We rely on RTI to support us with the real-time connectivity

required,” says Bijou Abraham, Chief Software Engineer at TechnipFMC.

● Modernizing wide-area surveillance

BAE Systems is working with Jindalee Operational Radar Network (JORN) in Australia. JORN is

their over-the-horizon radar surveillance network that monitors the air and sea movements

across northern coastlines. It plays a vital role in supporting the Australian Defence Force’s air

and maritime operations, border protection, disaster relief and search & rescue operations.

Connext DDS provides that connectivity layer of all the data that's coming in so that it can be

integrated and reacted to.

BAE Systems selected RTI Connext DDS as part of the $1.2 billion AUD Upgrade to Australia’s

JORN. With Connext DDS, the JORN Phase 6 Upgrade Program will modernize the system,

significantly increasing the radar coverage area and information gathered for the Royal

Australian Air Force, strengthening the protection of Australia’s northern borders.

● Enabling a safe flying car

Airbus Vahana is developing the first certified, electric, self-piloted vertical take-off and landing

(VTOL) passenger aircraft. RTI Connext DDS is used to operate those vehicles. It addresses

diverse systems with the same technology, greatly simplifying design integration and

modularity.

● Connecting autonomous systems

Nextdroid, which develops an on-the-ground transportation system, relies on RTI Connext DDS

for autonomous vehicle operation — for systems that need to operate for billions of miles over

decades. “Fielding autonomous vehicles to consumers requires not only performance and

flexibility today, but the safety, security and reliability to deploy at scale.,” says Daniel Gandhi,

Director of Autonomous Vehicles.

● Controlling future transport

Virgin Hyperloop One is the only company in the world that has built a fully operational

hyperloop system. The RTI Connext Databus connects the Hyperloop One faster-than-sound

transport (runs the data that runs the hyperloop for this).

● Finding and delivering the right data

26 / 28

Siemens is using Connext DDS in the wind turbine farms (can include 500 turbines with

100-meter blades) to collect, analyze, and react to data. Some of these IIoT applications run

from the edge to the cloud. There has to be instant communication to ensure that if something

goes wrong, it can be reacted to in real time. Turbine control requires fast local loops and

maintenance data collection. RTI-controlled wind turbines today generate ~14GW.

● Sharing wide-area voice and video

Harris provides command & control systems for fire, police and emergency response. They are

using Connext DDS for emergency response and control. The distributed communication allows

them to respond more quickly and to emergencies, with the correct and updated data. Connext

DDS meets their critical scalability, routing and recording requirements. It connects GUIs to

servers that route voice and video between mobile and fixed points.

About InfluxData

InfluxData is the creator of InfluxDB, the leading time series platform. We empower developers and

organizations, such as Cisco, IBM, Lego, Siemens, and Tesla, to build transformative IoT, analytics and

monitoring applications. Our technology is purpose-built to handle the massive volumes of

time-stamped data produced by sensors, applications and computer infrastructure. Easy to start and

scale, InfluxDB gives developers time to focus on the features and functionalities that give their apps a

competitive edge. InfluxData is headquartered in San Francisco, with a workforce distributed

throughout the U.S. and across Europe. For more information, visit influxdata.com and follow us

@InfluxDB.

27 / 28

http://influxdata.com
https://twitter.com/influxdb

548 Market St. PMB 77953, San Francisco, CA 94104

28 / 28

http://influxdata.com/get-influxdb/

