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Company in brief

Capital One Financial Corporation is a bank holding
company specializing in credit cards, auto loans,
banking and savings products headquartered in

McLean, Virginia.

Capital One is a diversified bank that offers a broad
array of financial products and services to consumers,
small businesses and commercial clients. A Fortune
500 company, Capital One has one of the most widely

recognized brands in America.

As one of the nation’s top ten largest banks based on
deposits, Capital One serves banking customers
through branch locations primarily in New York, New
Jersey, Texas, Louisiana, Maryland, Virginia, and the

District of Columbia.

Case overview

Time series data at Capital One consists of
Infrastructure, Application, and Business Process
Metrics. The combination of these metrics are what the
internal stakeholders rely on for observability which
allows them to deliver better service and uptime for
their customers, so protecting this critical data with a
proven and tested recovery plan is not a “nice to have”

but a “must have.”

The IT team at Capital One use InfluxDB to store and
visualize all their business, infrastructure, and

application metrics that are visualized in Grafana.

They built a fault-tolerant solution with full disaster
recovery capabilities, based on InfluxDB Enterprise and
AWS, that collects and stores metrics and events. They
also use InfluxDB with their machine learning (ML)
framework, whereby the collected time series is used
to model predictions which are then brought back into

InfluxDB for real-time access.

The solution should be for a purpose. If you want to do
this kind of thing [manage time series data], InfluxDB is

the best for it.”

Rajeev Tomer, Sr. Manager Of Data Engineering
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The business problem

Capital One relies on its system metrics to maintain system performance visibility and
meet its SLA’s in the context of company — and therefore data volume — growth. Since
its metrics consist of various types of time series data, Capital One needed to sustainably

store, manage, and protect this data across a variety of use cases and regions.

The company has a centralized cluster of InfluxDB for everyone in the organization to
store and manage their time series data. At Capital One, InfluxDB was already used for
multiple types of metrics:

- Business Transaction Metrics - Used to monitor business processes to understand
performance, as well as associated metrics that report and alert on events (such as
user volume changes, number of transactions)

« Infrastructure Health metrics - Encompassing typical infrastructure health metrics
(such as CPU and memory)

- Application Performance Metrics - Using InfluxDB to assess application performance
family (determining whether it's a web, database, or application tier); all application
metrics are sent to InfluxDB, and from there, they drive their line chart and alerting for
testing.

- Service Adoption Metrics - Monitored to show how well services are being adopted,
how much value they are providing to the organization, and how they are performing.

Given that context, Capital One needed to solve the following business challenges:

« Achieve resiliency across multiple regions to protect the various types of time series
data that the company’s internal stakeholders rely on for observability.

« Architect InfluxDB for high availability since as a bank and credit card company,
Capital One services must be highly available to their customers, which in turn means
that the Network Operations Center (NOC) team must always have access to their
metrics.

- Model existing metrics (time series data) with their machine learning framework to

enable forecasts and respond proactively.



@ influxdata®

The technical problem

The Capital One IT team set out to build an architecture that would meet their business
objectives. The technical challenges they faced, such as high data retention and an
unstable disaster recovery solution, are best encapsulated in outlining the technical
journey they undertook to build that architecture.

Technical architecture

InfluxDB is high-speed read and write database. So think
of it. The data is being written in real-time, you can read
in real-time, and when you're reading it, you can apply
your machine learning model. So, in real-time, you can
forecast, and you can detect anomalies.”

Rajeev Tomer, Sr. Manager Of Data Engineering

Designing and building Capital One’s solution comprised a journey involving three
versions of the solution leading up to their current version, as well as planning and
executing on their disaster recovery plan.
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How InfluxDB architecture at Capital One evolved

Architecture - Gen 1
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As shown above, the first generation (Gen 1) architecture has a centralized cluster and a

DR cluster. The DR cluster used InfluxDB’s backup/restore capability (a check, find, data

recovery capability for incremental backups, or for full backups to restore data in case of
data loss). The backup is shifted to other sites and restored whenever needed.
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The Gen 1 primary topology was as follows:

- The primary input came from Splunk, and Grafana dashboards visualized the metrics
stored in InfluxDB.

« Splunk sent high data volume, and reporting was done using Splunk’s line chart
ability (to track value trends over time). That included InfluxDB to support the line
dashboard.

+ InfluxData’s metrics collection agent Telegraf sent a direct APIl-based data load to
InfluxDB.

Gen 1 of the architecture presented two challenges:

1. Unsustainable high data retention ( > 400 days): Grafana was primarily used for
visualization, full testing, anomaly detection, and forecasting. Data retention became
challenging as the company grew. The 80/20 rule applied: they observed that 20% of
recent re-inserted data was used 80% of the time, and the other 80% was hardly
used.

2. The challenge of Backup/Restore in the DR solution: The backup/restore worked
well if they had to use it for the primary site only, but when it comes to the primary
site and then recovering the DR site, backup/restore was not proving sustainable. As

the data size grew, it presented new challenges, as discussed below.

Architecture - Gen 2
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For the generation 2 architecture (Gen 2), they continued using Grafana for visualization. They started thinking not only about
data retention but also about the ecosystem around InfluxDB since databases and applications need to be integrated with other

components. They considered how the data would be explored for the variety of time series use cases it is used for.

Solving the high data retention problem

Considering the ecosystem around InfluxDB helped solve the data retention problem:

- Raw data was exported daily to a number of data lakes and stored there.

- Capital One data lakes are an AWS S3 dish and give all their users the capability to perform analysis on structured as well as
unstructured data.

« These data lakes have become an online storage for InfluxDB, whereby 20% of the data is stored in InfluxDB, and the rest is

stored in the Data Lake, where it can be used for a variety of other uses, such as machine learning.

Modeling machine learning predictions using InfluxDB and data lake

Capital One uses the data lake and InfluxDB to build machine learning models. The model works as follows:

« Since the data is copied to the data lake in the same format as InfluxDB, their analyst data scientist can double up a machine-
learning model (to enable forecasts) using their Data Lake data.

« When the model is ready, by using the infinite history available in Data Lake, it goes to the Model Governance.

- Then the algorithm is ready to execute and will apply in real time on InfluxDB.

- That machine learning model is deployed using their means, not on top of real-time InfluxData.

Since InfluxDB is a high-speed read and write database, the machine learning model could be applied in real time to forecast

and detect anomalies in real time.

Yet the backup/restore issue was still a problem, and as such the DR solution was still unstable. Though on the surface, their

backup/restore solution seemed to be working well, it gave rise to the following challenges:

« One challenge, besides longer backup/restore duration (due to data volume growth), was the lack of an incremental backup.
Since there is no such thing as an incremental cluster, they needed to build an empty cluster and do a full restore. Depending

on the data they had, this required a variable amount of time.
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« Another challenge was the specific proportion. If they were using v1.5.2 and below, they faced some issues. When the

backup/restore would fail due to anti-entropy, they had to clone out the anti-entropy, make a good backup, and restore.

They did overcome these operational challenges initially, did a dry run and everything seemed to be working fine. But the DR
solution was still an unstable DR solution. They were betting on the backup working properly, evaluating their DR solution every
three to six months, and having to wait until the next exercise to ensure both sites are restored. Ultimately, they decided to

design a process solution to address this problem (as shown in the current architecture diagram below).
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Building a stable DR solution

In their current architecture, which has proven to be very robust, they were able to solve the unstable DR Solution:

- Raw data is exported every 30 minutes to the Data Lake and is also available for ML.

« They replaced the backup/restore with an InfluxDB export/import script and leveraged AWS S3 solution to move the exported

data files from the primary site to the DR site.
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- The DR site is not standby (not an empty cluster) anymore. It is now a Passive cluster that is survivable for importing the data
from the primary site.

« The team controls who can read and write via a load balancer. All reads/writes directly go to the primary site (as the dotted
line to the DR site designates). This enabled them to ensure that their DR side of the cluster is available and that they can
monitor, on a real-time basis, to ensure their DR site remains functional.

- They can switch sites at any time, which wasn’t possible before with the standby cluster. Now they export all the database,

transporting data via AWS S3 to the DR site and importing it back, thereby eliminating DR solution instability.

Achieving resiliency across multiple regions

Capital One needed complete protection against an entire region failure and leverages the following AWS resources to achieve

resiliency in its architecture:

« Route53, which acts like a DNS switch
- Elastic Load Balancer, which automatically distributes incoming application traffic across multiple targets
« AWS S3, an object-based storage service where any of the AWS services can be accessed to store and retrieve dedicated

data

Shown below is the Region 1 and Region 2 architecture (with AWS, Capital One has data centers across the continental United

States and the globe):

- The region refers to a geographical location where Capital One has multiple zones.
« Zones refers to physical data centers (such as physical buildings), where zones are separated by buildings, power, and other
infrastructure components.

« The zones are connected with low-latency lines, resulting in very high response times.

In Region 1 architecture, the data flow is as follows:

« All traffic is routed to Region 1.
« InfluxDB Export Script runs every 15 minutes.
- Data is replicated to Region 2.

« InfluxDB Import Script runs every 15 minutes.
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Resiliency - Region 1 Active
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In the Region 2 architecture, the data flow is as follows:

« All traffic is routed to Region 2.
« InfluxDB Export Script runs every 15 minutes.
- Data is replicated to Region 1.

« InfluxDB Import Script runs every 15 minutes.
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How Capital One architectured InfluxDB for high availability

InfluxDB Enterprise 1.6.2 is used on all the nodes (the latest version at the time), and Capital One plans to keep using newer

versions as they are released.

In the resiliency architecture shown above:

« Three data nodes are accompanied by three meta nodes.

« The three data nodes are put in different availability zones leveraging AWS high-end infrastructure, so that even if two AWS
nodes are lost, Capital One customers will still be able to retrieve read/write.

« A home-grown admin tool is used.

« They have the same setup on DR side regions: three data nodes and three meta nodes.

10
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Data flow and data import/export

They have built in some logic so at any given time, all the traffic is automatically routed to the load balancer that's under Region 1.
For Region 2, they have written an export code that leverages InfluxDB, aims the command to export data from all databases,
and puts it to a S3 bucket. They leverage one of AWS current features — cross-region replication — so that the data is totally off

their site and is taken care of by AWS.
They have another code which runs on the DR site, reads all the files, and imports that data into this structure. The cycle runs

every 15 minutes. At any given time, the cluster in the DR region is 15 minutes behind the primer, which is well within Capital

One’s established SLA and very well within all regulatory times.

Export*

ENDTIME=LASTENDTIME

Import*

<YOURBUCKET>/export,

§3://<YOURBUCK

compressed -path
' /<YOURBUCKE

* High level pseudo code , Not the actual code

1
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An export script first runs on the Region 1 data node. As long as all the data is replicated, then they can use one of the nodes. So

they use one node and set the DURATION (how often the script will run):

« Every time the script runs, it sets the STARTTIME equals the last ENDTIME, so that it always has a block that it operated on.
ENDTIME will be STARTTIME plus DURATION.

- The first operation that the script performs is ‘show databases’ so that files can be collected from each database individually
instead of one big file.

- Afor loop goes through each of the databases in the list and runs influx_inspect (an Influx tool that allows getting the data
out in raw text file format).

« They extract each database and use the -compress -database feature to reduce file size. Then they just put STARTTIME,
ENDTIME and choose file location.

« Next, the scripts puts the alpha file into S3 and does that for all the databases. Then it updates the ENDTIME with the last
ENDTIME .

« This file goes into an S3 bucket that is using the AWS bucket replication, so that whatever files are put in it show up in the

same named bucket or a different bucket in another region.

In Region 2, they have the DR cluster running, which receives the data from the above script. On one of the data nodes in Region

2, they have an input script running repeatedly that puts the data in the cluster:

« The script first copies all the files from that bucket in Region 2 and puts them in a local directory.
- Then they get the list of files and go through a for loop, and the script runs the influx -import which allows inserting data
directly into the database.

« The script deletes the file in S3, and that is the command that terminates the state of the backup there.

Results

If there is a disaster, then we can switch our clients to the
other region, region two, and then it would be 30 minutes
behind or whatever the timeline would be set.”

Karl Daman, Software Engineer 12
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By solving the high data retention and DR solution instability problems, Capital One has achieved a much more manageable

ecosystem and maintained the visibility needed to solve its business challenges.

Performance Metrics Collected Using Telegraf

InfluxDB - Cardinality InfluxDB - Write HTTP Requests InfluxDB - Query Requests

InfluxDB - Client Failures InfluxDB - Query Performance InfluxDB - Write Points

In the sample Chronograf dashboard above, Capital One captures Cardinality, Write HTTP Requests, Query Requests, Client
Failures, Query Performance, and Write Points (all per minute). This works very well for monitoring performance metrics. Telegraf

can be installed on many client servers to collect this data.

Lessons learned in their technical journey include:

- It’s critical to keep an open source version of InfluxDB simply for monitoring the cluster that you have the Enterprise version
on. They have Chronograf visualizing the metrics in InfluxDB, but going to a different InfluxDB so they can still monitor
InfluxDB Enterprise even if it has an issue.

« Surrounding technology capabilities can be the key to choosing the right architecture: being in AWS, they could support
InfluxDB export/import data by using S3. The whole technology solution was more available to InfluxDB export/import for DR

versus backup/restore.

Powered by InfluxDB Enterprise and AWS, Capital One’s solution is providing reliable disaster recovery while delivering better

service and uptime for their customers.

13
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About InfluxData

InfluxData is the creator of InfluxDB, the leading time series platform. We empower
developers and organizations, such as Cisco, IBM, Lego, Siemens, and Tesla, to build
transformative loT, analytics and monitoring applications. Our technology is purpose-built
to handle the massive volumes of time-stamped data produced by sensors, applications
and computer infrastructure. Easy to start and scale, InfluxDB gives developers time to
focus on the features and functionalities that give their apps a competitive edge.
InfluxData is headquartered in San Francisco, with a workforce distributed throughout
the U.S. and across Europe. For more information, visit influxdata.com and follow us
@InfluxDB.

influxdata®

Try InfluxDB

Get InfluxDB

Contact us for a personalized demo influxdata.com/get-influxdb/
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