

Company in brief

ntop develops open source network traffic monitoring applications. It first app, called ntop (circa 1998),

is a web- based network monitoring application. ntop’s products range from traffic monitoring, high

speed packet processing to deep-packet inspection and IDS/IPS acceleration (Bro and Suricata). Its

software powers many commercial products. ntop aims to provide better yet cost-effective traffic

monitoring; go beyond standard metrics and increase traffic visibility by analyzing key protocols in

detail; and promote open-source software while protecting selected IPRs. All commercial ntop tools are

available at no cost for research and education. ntopng is the next generation version of the original

ntop, a network traffic probe that monitors network usage. ntopng is based on libpcap (Linux) and has

been written in a portable way to virtually run on every Unix platform, MacOSX and on Windows. ntopng

provides an intuitive, encrypted web user interface for exploring real-time and historical traffic

information.

Case overview

ntop wanted to collect real-time network traffic monitoring metrics and events to support ntopng, the

new generation version of its network traffic probe “ntop” that monitors network usage. ntop users

needed visibility into their networks to understand and control network traffic and health. So in ntopng,

the company replaced an RRD database with the open source InfluxDB time series database to build

web-based traffic analysis & flow collection and achieve network traffic and security monitoring in

real-time.

ntopng: the real-time network traffic probe using InfluxDB

2 / 13

“It’s very important today to deliver data with high granularity,
because people want to correlate host monitoring with traffic
monitoring. We believe we made a good choice jumping to
InfluxDB.”

Luca Deri, founder

The business problem

Control over a network begins with visibility. It requires a clear understanding of traffic flowing on a

network, and such knowledge is the first step towards evaluating potential network capacity,

performance, and even security issues. Further, event correlation can provide timely information about

network health.

ntop wanted to give its customers the ability to analyze network traffic in a simple way and to be their

source of network monitoring data. Because ntop’s users don’t need low-level information and often

just want to know high-level facts (knowing if the network is fast enough for example), ntop had to

translate networking information, such as packet loss, into something meaningful. In particular, ntop

needed to understand if something unexpected is happening on the network, who is causing it and

how to fix it. ntop’s original solution already provided a visualization platform, but they needed flexible

and scalable time series functionality to achieve monitoring granularity. ntop wanted to build a solution

in line with its approach to network traffic monitoring:

● Ability to handle high volume monitoring data from host and network metrics granularity

● Leverage modern multicore/NUMA architectures in order to promote scalability

● Use commodity hardware for producing affordable, long-living (no vendor lock), scalable (use

new hardware by the time it becomes available) monitoring solutions

● Use open source to spread the software and let the community test it on uncharted places

Most monitoring protocols (SNMP and NetFlow) have been designed to produce average data.

While it was once important to speak a certain language, such as SNMP or NetFlow, in the networking

world, what matters today isn’t really where the data is coming from but how to manipulate it. The

format today is generally JSON, and when the data is translated from a specific format to JSON, it can

easily be manipulated. Further, with ntopng, ntop wanted to complement existing information with

information from network traffic.

3 / 13

The technical problem

To achieve monitoring granularity and stay relevant, ntop had to rethink its application, in which time

series data was being stored in an RRD database. The original ntop, created in 1998, was a C-based

app embedding a web server able to capture traffic and analyze it. Contrary to many tools available at

that time, ntop used a web GUI to report traffic activities.

ntop Architecture

Historically, network devices such as routers and switches produce monitoring information based on

the traffic that traverses such devices. Various techniques are used to avoid exhausting network device

resources, in particular CPU and memory, including packet sampling and limiting counter polling.

While Packet Analysis provides basic information — for understanding network traffic issues, usage,

performance, and security flaws — packets are too fine-grained. So ntop needed to aggregate them into

flows (5 tuple IP/port src/dst, protocol). The first step was to move from packets to flows, and to create

and commute metrics on these flows.

The company’s design goals for ntopng were:

● Clean separation between the monitoring engine and reporting facilities

● Robust, crash-free engine

● Platform scriptability for enabling extensions or changes at runtime without restart

4 / 13

● Real-time (most monitoring tools aggregate data every 5 minutes and present it when it’s too

late)

● Many new features including HTML 5-based dynamic GUI, categorization, Deep Packet

Inspection (DPI)

To store time series data, ntopng had used an RRD-based system for historical reasons (used in the

original ntop platform) and because RRD is file-based (pro) which allows it to run on the same host as

ntopng with no external service dependency. Yet the RRD design had disadvantages:

● Unable to cope with large number of hosts (5 min aggregation would still generate too much

data, forcing one to take larger aggregation windows — not effective for monitoring — or keep

number of hosts small), so ntop was unable to save all data to disk

● High load on the filesystem in particular on low-end/embedded devices that feature slow disks

● Old programming library (designed as a tool rather than a library)

● Thread support that works but that is mostly a hack

● Too many library dependencies even if ntopng uses it as a time series database with no graph

generation

● A library that has not developed for 5+ years and that has become a project in maintenance

mode

Beside the above RRD design limitations, the main driving forces for replacing RRD in ntopng were its

inability to easily compare time series and handle long-term measurements without aggregation and

“native” loss of precision.

The solution

“We decided to adopt InfluxDB for a few reasons. First of all
because the ecosystem is very good. So we don’t have just the
database but we have an ecosystem in the vibrant
community.”

Why InfluxDB?

ntop started to evaluate InfluxDB as early as 2014 but decided to wait a bit longer before integrating it

into the project. In 2017, ntop decided that RRD was becoming a real bottleneck to ntopng evolution, so

after assessing InfluxDB and Prometheus as viable options, they chose InfluxDB for key reasons:

● Ecosystem (the TICK Stack), vibrant community and company behind the project

5 / 13

● Flexibility (ntop preferred to push data to InfluxDB, rather than ntopng to be pulled as

Prometheus does)

● Popularity among other ntop users using it in various projects and happy with its performance

and stability

● Generic DB, not targeting a specific domain such as Prometheus

The ntopng engine has been designed for real-time traffic measurement. It can report packet-based

information in real-time, and the engine can be polled continuously while processing traffic. ntopng

analyzes network traffic, has a web service, and shows network traffic according to values criteria, flows,

cost, interfaces and so on. It requires almost no configuration and reports information in-memory. Even

users with little experience can view network health with a simple pie chart.

ntopng: Interpreting Data

ntopng also has alert functionality, to alert users when something goes wrong, and provides alert

information in context to show why the problem originated. ntopng complements traditional passive

discovery (learning from traffic flowing in the network) as well as active discovery (probing the network).

6 / 13

Passive Alerts

Active Discovery

ntopng also offers the ability to interpret network traffic in a more low-level fashion, to move from

high-level overview of a certain device traffic, to a low-level analysis of the flow when needed.

7 / 13

ntopng Drill Down

By producing data, ntopng provides an idea of the problem and performs lightweight interpretation

through alerts. Yet a network administrator has to decide whether the data presents a problem or not.

ntopng can be used to export data to other people, to other applications, and to do that externally.

ntopng Monitoring

In summary, ntopng features include:

8 / 13

● Embedded alerting system pluggable with Nagios and messaging systems
● Usage as Grafana datasource
● Ready for OpenStack, Wireshark, Vagrant, Docker, Elastic
● nDPI: passive mode = monitoring
● Support for NetFlow/sFlow/SNMP
● Passive/Active Network Device Discovery
● Traffic Behavior Analysis

Technical architecture

“InfluxDB is therefore the step forward with respect to RRD.
We had to do many changes in our code, not because of the
InfluxDB design, but because InfluxDB offers us a lot of new
opportunities that we want to exploit.”

ntopng Architecture:
Three different and self-contained components communicating with clean API calls

The ntopng Monitoring Engine is coded in C++ and based on the concept of flow (set of packets with

the same 6-tuple). Flows are inspected with a home-grown DPI library named nDPI aiming to discover

the “real” application protocol (no ports are used). Information is clustered per (Capture) Network

Device, Flow, and Host.

9 / 13

nDPI library

DPI is a technique for inspecting the packet payload for the purpose of extracting metadata (e.g.

protocol). Since ntop found available DPI toolkits on the market to be proprietary, expensive, and to

cause vendor lock-ins, and since company sought a DPI toolkit compatible with the open source

concept, they created their own GPL DPI toolkit (nDPI) in order to build an open DPI layer for ntop and

third-party applications:

● nDPI supports over 240 protocols.

● All flows are analyzed through nDPI to associate an application protocol to them.

● Layer 7 (L7) statistics are available per flow, host, and interface (from which monitoring data is

received). L7 refers to the topmost layer of the Open Systems Interconnect Model known as the

application layer (the layer that supports end-user processes and applications).

● For network interfaces and local hosts, nDPI statistics are saved persistently to disk.

InfluxDB migration implications

To allow people to use both RRD and InfluxDB until the migration is complete, ntop created a time series

Lua layer inside ntopng. RRD/InfluxDB differences had to be masked during data extraction:

● RRD has automatic data consolidation/rollup that ntop configured in InfluxDB with continuous

queries.

● RRD handles natively counters/gauges whereas on InfluxDB, ntop needed to do that in queries.

● In RRD, ntop set the time policy and data value boundaries at archive creation. In InfluxDB, they

needed to do that during data extraction to make applications aware of that.

● RRD normalizes automatically data at a specific resolution based on the query time-range. With

InfluxDB, they had more precise measurements that had to be properly handled.

ntop has completed data export to InfluxDB via HTTP for all counters. ntopng moved from 5-min host

counters to 1 minute or less, and built a time series Lua library for hiding RRD/InfluxDB differences so

that existing ntopng users can migrate to Influx and RRD/InfluxDB can be handled seamlessly in the

ntopng GUI.

Information lifecycle

Information takes the following path in ntopng architecture:

● ntopng keeps, in memory, live information such as flows and hosts statistics.

● As the memory cannot be infinite, periodically non-recent information is harvested.

● Users can specify preferences for data purge.

10 / 13

Packet processing journey

The packet journey is very simple and consists of 4 steps:

1. Packet capture through PF_RING - ntop’s infrastructure for capturing packets (Linux) - or

libpcap (part of every Unix, Windows, or MacOS cell distribution)

2. Packet decoding - no IP traffic is accounted

3. IPv4/v6 Traffic only:

● Map the packet to a 6-tuple flow and increment stats.

● Identify source/destination hosts and increment stats.

● Use nDPI to identify the flow application protocol (UDP flows are identified in no more than

2 packets); TCP Flows can be identified in up to 15 packets in total (otherwise, the flow is

marked as “Unknown”).

4. Moving to the next packet

ntopng as a NetFlow/sFlow collector

ntopng can collect traffic information sent by routers (NetFlow) and switches (sFlow). Flow information

needs binary-to-JSON translation since ntopng was designed to be agnostic with respect to flow

low-level details. So ntop’s other component, nProbe, does the conversion from the flow format to

JSON. This information is delivered over ZMQ (ntop’s messaging queue) to ntopng. ntopng can do

packet collection, workflow collection, and can correlate this information seamlessly.

ntopng as a NetFlow/sFlow Collector

11 / 13

Results

“Removing the inability to monitor large networks with many
counters and with low granularity is compulsory, and InfluxDB
is definitively adequate for this task.”

ntopng allows comprehensive traffic views from very high-level to very low-level. This enables users to

identify which host, physical port, or switch is causing issues and to troubleshoot the problem since

such visibility provides a complete report of the network’s state. Using InfluxDB, ntopng is open to “big

data” systems that can scale with data in volume and speed. It is able to export monitoring information

in JSON format towards various systems including Elasticsearch / Logstash and ZMQ. ntopng is also

able to collect, self-produce (from packets), and export monitoring information by normalizing it in

JSON format.

ntopng enables:

● High-speed web-based traffic analysis and flow collection

● Persistent traffic statistics in RRD format

● Layer 7 analysis by leveraging nDPI

ntopng can be used in a variety of use cases such as:

● Monitoring of a Physical Interface - An example is a physical NIC card.

● Flow Collection - This requires ntopng to be used in conjunction with nProbe which can

act as probe/proxy.

● Correlation of host, interface and network flow monitoring data to monitor traffic per

application/user

ntopng is available in three versions: Community, Professional (Small Business Edition) and Enterprise.

The Community version is free to use and open source. The Professional and Enterprise editions offer

some extra features that are particularly useful for SMEs or larger organizations.

Using InfluxDB for ntopng, ntop is fulfilling its mission of real-time network traffic monitoring while

maintaining its commitment to being, as its community saying goes, “open-source from the source”.

12 / 13

About InfluxData

InfluxData is the creator of InfluxDB, the leading time series platform. We empower developers and

organizations, such as Cisco, IBM, Lego, Siemens, and Tesla, to build transformative IoT, analytics and

monitoring applications. Our technology is purpose-built to handle the massive volumes of

time-stamped data produced by sensors, applications and computer infrastructure. Easy to start and

scale, InfluxDB gives developers time to focus on the features and functionalities that give their apps a

competitive edge. InfluxData is headquartered in San Francisco, with a workforce distributed

throughout the U.S. and across Europe. For more information, visit influxdata.com and follow us

@InfluxDB.

548 Market St. PMB 77953, San Francisco, CA 94104

13 / 13

http://influxdata.com
https://twitter.com/influxdb
http://influxdata.com/get-influxdb/

