@ influxdata’

AN INFLUXDATA CASE STUDY

How Wayfair Uses InfluxDB
to Gain Visibility into System
Performance and Understand
Site User Experience

Jim Hagan

Manager, Wayfair
Mike Bell
Manager, Wayfair

APRIL 2018

@ influxdata®

Company in brief

Founded in 2002 by Steve Conine and Niraj Shah, Wayfair is one of the world's largest
online destinations for the home. It carries a broad portfolio of brands including its own
Wayfair brand, Joss & Main, All+Modern, Birchlane, Perigold, and many others. Wayfair helps
people find the perfect product at the right price. Their extensive selection and superior
customer service coupled with the convenience of online shopping, make it easier than ever

before to find exactly what you want for your home at a price you can afford.

Wayfair’s growth is driving its complex infrastructure. Its technical team is working
strategically with InfluxData to ensure the Wayfair implementation is scalable, robust, and in
line with the InfluxDB’s future direction. Wayfair is also providing a rich set of case studies to
help drive InfluxDB further in its support of features that larger enterprises need.

Wayfair has contributed to various open source projects including Graphite and InfluxData’s
metrics collection agent, Telegraf. In the true spirit of open source, Wayfair’s architecture
involves a large number of collaborations and ongoing mutual feedback to help shape and

improve future releases.

Case overview

Wayfair needed to efficiently monitor performance across their systems, which are
spread across three major data centers. The data is used by their developers, business
stakeholders, and internal alerting engine. Their 24/7 Ops Monitoring Center is using this
data to constantly analyze the vital signs of Wayfair’s IT infrastructure and storefront
operations. Rapid growth led the company to rethink its time series infrastructure. Their
existing Graphite solution failed to scale with growth demands in terms of ingest rate,
storage, high availability, and it required major engineering time investment to maintain

core functionality.

@ influxdata®

Wayfair chose InfluxData to monitor system metrics & events across data centers, and to
perform real user monitoring (RUM) to understand user experience on their e-commerce site.
The goal is to marry these with business process events and provide better business insight
and competitive advantage. Wayfair use Kafka MirrorMaker to replicate the data to all three
locations and have three six-node InfluxDB Enterprise clusters dedicated to different
workloads.

As Wayfair has grown and matured its software
development and data center operations over the past
decade, and particularly over the last five years, we have
embraced the principle of providing maximum visibility
into our processes and systems.”

Jim Hagan, Manager

The business problem

Wayfair’s pursuit of process and system visibility has led to a very large logging and time

series infrastructure built to receive a constant stream of application logs and metrics.

As a company that has experienced hyper growth over the last five years, Wayfair often
needs to speedily adopt solutions and integrate them into mission critical operations
roles. Graphite was relatively easy for their bootstrapped engineering team to adopt and
deploy quickly. Its schema-less model meant developers rapidly embraced it as they
could send data in a format meaningful to them, without

@ influxdata®

checking with a central gatekeeper. This schema-less environment also allowed the
database to become quite unruly, however, since there was very little means to analyze and
track the cardinality of various metrics.

While Graphite is a powerful open source package, its active development cycle has been
on the wane for a number of years. During this time, Graphite’s user base has drifted away to
other solutions such as Prometheus and InfluxDB. Wayfair did their best to have Graphite
work for them: their approach was to throw a considerable amount of compute and storage
resources at it in order to force scalability, and a considerable amount of technical debt in
maintaining arcane configurations and heavy handed cleanup scripts. The amount of
engineering resources tied up in keeping the system stable and performant was relatively
high, which meant those same engineers have not been able to work on higher value
projects.

Wayfair decided it was time for a bolder move: to rethink time series data in their
architecture and seek newer platforms built on high availability principles — one that was
tailor-made for the type of distributed pipeline they have while providing necessary the
resilience and HA.

The technical problem

As with many open source projects, Wayfair’s teams were able to move rapidly with
Graphite. It can be very fast for write and read, but works within very fixed scalability
constraints. Their implementation is coupled with the StatsD aggregation process. Since
this uses an upstream hash ring to route metrics, it had always been a challenge to
refactor the storage footprint of a Graphite/carbon cluster. There aren’t “relocate shard”,
“backup shard”, or “restore shard” operations in the Graphite/carbon world (mainly
because there is no proper sharding concept; each metric is essentially a shard).

@ influxdata®

Having no replication/redundancy with this stack hurt them in several ways: primarily, it
was impossible to do the kind of on-the fly maintenance and hardware upgrades that
require them to bring a node down for any length of time. This also meant that there was

always high contention for a given metric as it only resides on a single host.

Though they were “getting by” with fewer than 10 carbon storage hosts across three data
centers and using a multi-layered Graphite proxy to merge data from remote data centers
into a single web service, “getting by” wasn’t adequate. They had many slow queries with
frequent timeouts (the opposite of high availability). They were also continually hitting the
storage wall until they had each carbon host attached to nearly 7 TB of direct attached
storage. Not surprisingly, their storage team eventually indicated that this model wasn’t
scalable.

BOSTON IRELAND

Grafana Services| Alerting Engine

HTTP

TCP

Statsd Aggregators

A uop

|
| |E2 Statsd Clients (crit)
|

HTTP

BO1 Graphite (8 hosts)

|
|

|

!

|

!

|

|

|

|

I HTTP HTTP
| | I
|

|

|

!

|

|

|

|

|

I
I
I
I
HTTP HTIF’
I
I
I
I
I
|

T TCP

Statsd Aggregators

TCP

BO1 Statsd Clients

? ubP

SE2 Statsd Clients (crit)

Ly

L

L

L
T uopP I

I Statsd Aggregators

Ly

L

L

|

|

@ influxdata®

BOSTON || IRELAND I
| | |
Grafana Services| Alerting Engine | | |
HTTP | | |
TCP
HTTP wrle | |
I Statsd Aggregators I
| I A uop I
HTTP | | |E2 Statsd Ciients (crit) |
BO1 Graphite (8 hosts) I I I
| L e e e e e e e |
HTTP | TP
____________________ -
SEATTLE

T TCP

Statsd Aggregators

L
L
L
L
T UDP I I
L
L
L
|
|

TCP

Statsd Aggregators

? ubP

SE2 Statsd Clients (crit)

BO1 Statsd Clients

The “Legacy” Graphite Cluster in Service Until Early 2017

The cluster shown above relied heavily on cross-data center HTTP calls using their
Boston Graphite layer as a direct proxy for remote data center carbon storage layers.

Provisioning compute and storage was more of a challenge in the remote data centers.

In an effort to prepare for the massive traffic they received during 2017’s Cyber 5
weekend, they built out the cluster to 64 data nodes with only 0.5 TB attached to each
node. Further, they split this group of nodes into two clusters of “critical” and “general”
data. The critical data mostly fed their 24/7 network operations center team and their
most customer-critical web service alerts.

@ influxdata®

That’s a fair amount of compute power, but it addressed their main areas of system failure
in the form of large contention for data at the TCP level of a given carbon host.

As there is no central index for each measurement, the carbon architecture requires a fair
number of redundant searches, which leads to network and file system contention. In
order to scale so wide (as Wayfair needed to do), the storage in its central Boston,
Massachusetts data center had to be consolidated; meaning their data centers in Seattle,
Washington and Ireland would not have their own Graphite/carbon storage instances.
Instead, they sent their StatsD metrics cross-data center via UDP into the main data
center. This element itself had a lot of overhead to monitor and wasn’t robust against a
major network outage or latency.

Specifications of their Graphite implementation (refactored for Holiday 2017) were as
follows:

« Data points/second: Up to 1 Million

- Total storage allocated: 35 TB

- Carbon storage hosts: 64

« Graphite web server hosts: 40

« StatsD pipeline hosts: 50

« Retention: 2 Months (at 10 sec. resolution)

@ influxdata®

BOSTON IRELAND

The “Super Graphite” Cluster Built for Holiday 2017

Through their efforts at scaling Graphite, they reached concrete conclusions:

1. Graphite/carbon does not support true clustering (replication and high availability).

2. Graphite/carbon has a unique storage model, and although often fast due to its fixed
temporal resolution, requires pre-allocation for each series, leading to storage
infrastructure that is difficult to manage. It can even lead to rapid and catastrophic
depletion of disk resources.

3. Graphite/carbon does not provide an out-of-the-box data pipeline solution. They’ve
relied on their highly optimized in-house StatsD package. While this robust service is
very good at what it does, the technical debt and opportunity costs in maintaining
such a tool for internal consumption is high. For example, it currently lacks any sort of
I/O support for Kafka. UDP is its only I/O mechanism. If they wanted more 1/O options,
they would need to build them.

4. The Python code underlying Graphite and carbon has maxed out its performance
potential.

5. There is no straightforward way to move metrics from one data node to another
(modern clustered solutions support this via shard relocation and backup/restore
operations).

@ influxdata®

With the above conclusions in mind, Wayfair set out to evaluate a number of replacement
systems. They found that InfluxDB from InfluxData offered the right combination of
attributes that would take them to the next level. They had a number of core technical
requirements that were honed over the years of working with Graphite:

« Support hundreds applications sending metrics from multiple data centers

« Handle millions of points per second

« Support for non-blocking I/0

- Data availability within seconds (for alerts and graphs)

- Tolerance for rapid spikes in traffic at certain times of day (3x to 5x average peak
traffic)

- Easy for developers to integrate into their code

« Retention periods of two months to over a year

« Support for data replication and shard management.

The solution

We set out over a year ago to evaluate a number of
replacement systems. After an initial investigation, we
concluded that InfluxDB from InfluxData offered us the
right combination of attributes that we felt would take us
to the next level.”

Jim Hagan, Manager

@ influxdata®

With the above conclusions in mind, Wayfair set out to evaluate a number of replacement
systems. They found that InfluxDB from InfluxData offered the right combination of
attributes that would take them to the next level. They had a number of core technical
requirements that were honed over the years of working with Graphite:

« Support hundreds applications sending metrics from multiple data centers

« Handle millions of points per second

« Support for non-blocking I/0

- Data availability within seconds (for alerts and graphs)

- Tolerance for rapid spikes in traffic at certain times of day (3x to 5x average peak
traffic)

- Easy for developers to integrate into their code

« Retention periods of two months to over a year

« Support for data replication and shard management.

@ influxdata®

Why InfluxDB?

Through Wayfair’s evaluation and proof-of-concept phase, InfluxDB proved capable of
meeting their core technical requirements. It is architected in such a way that allows
balancing horizontal and vertical scaling approaches for both compute and storage.
Wayfair’s in-house time series technology review identified key attributes that offered
substantive advantages over the status quo:

1. InfluxDB is undergoing rapid performance improvements and hardening.

2. InfluxDB supported true clustering technology (replication, high availability, shard
management).

3. InfluxDB and all related packages from InfluxData are written highly optimized in Go, a
language that fully exploits multi-core environments.

4. InfluxDB was built with an emphasis on efficient and scalable storage. Knowing that
many of the metrics in a time series system will be sparse and/or ephemeral, InfluxDB
per data point compression will generally be higher than carbon’s as there is no pre-
allocation of storage for stored data points.

5. InfluxDB has an active community and an ecosystem of related tools for building
enterprise-wide installations. Wayfair found it more appealing, as an organization, to
contribute to an occasional Telegraf plugin (a plugin-based data streaming utility) that
others in the industry are using and improving, than to maintain a completely
proprietary codebase for the backbone of their data pipeline.

6. InfluxDB has a growing customer base from a diverse set of companies in IT, loT,
financial analytics, and data science. Wayfair felt this diverse customer set will allow
this platform to evolve into a general analytics platform that can support Wayfair
applications as broad as IT infrastructure monitoring, application performance

monitoring, as well as data science and market research.

10

@ influxdata®

In the proof-of-concept chart below, data nodes contain shards, meta nodes manage the
cluster state (shard assignments). Telegraf is the gateway into the cluster.

READ HTTP API CLIENTS (Grafana, Chronograf)

i 8086

Data Node 1 Data Node 4
Meta Node 1
1 ¥
Data Node 2 Data Node §
Meta Node 2 e B I
ol |
Data Node 3 Data Node 6
Meta Node 3

I 8086

Kafka ——» TELEGRAF INGEST (HTTP API)

General Architecture for InfluxDB Proof of Concept Cluster at Wayfair

As part of their migration process, Wayfair worked closely with their development teams
to retool their code so that they could send metrics to both Graphite (via StatsD format)
and InfluxDB (via line protocol format). Using feature toggles, each application can write
in either format or both at the same time. This allowed them to do head-to-head testing of
query performance as well as load test their new InfluxDB cluster.

1

@ influxdata®

Why replace Graphite with InfluxDB

As part of their migration process, Wayfair worked closely with their development teams
to retool their code so that they could send metrics to both Graphite (via StatsD format)
and InfluxDB (via line protocol format). Using feature toggles, each application can write
in either format or both at the same time. This allowed them to do head-to-head testing of
query performance as well as load test their new InfluxDB cluster.

Graphite Limitations InfluxDB Advantages
« No clustering « Rapid performance improvements & hardening
- Storage infrastructure that is « Supports true clustering
difficult to manage « Written in Go, a language that fully exploits
+ No out-of-the-box data multi-core environments
pipeline solution « Built with an emphasis on efficient & scalable
- Graphite maxed out its storage
performance potential « Active community & an ecosystem of related
« No shard relocation & backup/ tools for building enterprise-wide installations
restore « Growing customer base from a diverse set of
companies

12

@ influxdata’

Grafana Graph Showing a Data Comparison in Graphite and InfluxDB

Technical architecture

We recently introduced InfluxDB as our first-class time
series database system, where we had the opportunity to
work directly with InfluxData to ensure we were on a
path that is scalable, robust, and in line with the future

direction of their platform.”

Jim Hagan, Manager

13

@ influxdata®

Reference Architecture for Wayfair’s InfluxDB Metrics Data Pipeline

mr T T T T T T T T T T T T T o ANn | m= T T T T T T T
IRELAND = |
I | SECURE ZONE I I
I | I
| | | !
telegrafreceiver UD LB Apps |
| oL e[|t e ¥
| | I
I e e e | |
L e e e e e e e . — — — — — — — — — — — ————
______________________ e e e e s — — — — ————————
:_ BOSTON |
| I
| [Aoes UDP LB tel(ez%ra':g:ger MIRROR TOPIC: influx_metrics |
I [topiswinflux_metrics) :
I
| O
| Kafka i : |
_______________ ' |
. - , Lo —
: |_ SECURE ZONE (topic: in metrics] y [topie_influx_metrics) HTTP: 80 : | I
| | InfluxDB |
I
I l Apps UDP LB telegrafreceiver | telegrafingest |
l 809 (2 Nodes) (24 Nodes)
I | I
I | I
I ———————————————— 4 MIRROR JOPIC: influx_metrics I
| I
—————————————————————— ———————— — — — — — — — — — — —]
__ -
r SEATTLE, ©H—————"——=———7=——=— = |
I | SECURE ZONE L
I | I
I | B
UDP LB .) » telegrafreceiver LD LB Apps
: Apps e lel(ezg“rah:l::;\)’ﬂ’ | _ftopie-infis—metricst—| Kafka | 2 Nodes) 30¢ : :
|
I b — — |
L e I

14

@ influxdata®

Wayfair use this Kafka-centric pipeline to integrate metrics data from three different data
centers (including secure and non-secure zones in each).

A modern metrics data pipeline

Wayfair are using their migration to InfluxDB as an opportunity to build a more flexible
and robust data architecture with Kafka as an intermediate metrics buffer. This is modeled
after a paradigm they’ve used successfully with their logging system.

InfluxData’s Telegraf service made it relatively easy to configure a multi-layered pipeline
by which applications could send data to Telegraf and allow Telegraf to pipe it into Kafka
for later consumption. In practice they are using Telegraf twice:

« One layer to receive raw InfluxDB line protocol from applications via UDP and forward
it on to Kafka

- An additional layer to consume metrics from the Kafka buffer and write to InfluxDB

Wayfair’s buffered model:
1. Allows them to connect multiple data centers by mirroring Kafka topics to shuttle
metrics, rather than through cross-data center database replication
2. Allows them to use fast, non-blocking data protocols such as UDP upstream (at the
top of the data funnel) and more transactionally robust protocols such as TCP as they
get downstream
3. Gives them the ability to inject various processing hooks into the data stream as their
business needs evolve.
4. Makes it easy to write the same data to multiple instances of InfluxDB (simply by
consuming the same topic as the main cluster)
5. Gives them multi-day tolerance against a severe network connectivity incident
(dependent on the configured age limit of messages in Kafka)

15

@ influxdata®

InfluxDB is a major component in Wayfair’'s Cyber 5 Holiday weekend monitoring and
alerting systems for monitoring data center metrics as well as e-commerce site user

metrics:

- Data center metrics (100s of apps sending metrics from multiple data centers):

- At the three data centers, Wayfair use Kafka’s MirrorMaker to replicate the data to all
three locations

« They have three six-node InfluxDB Enterprise clusters, which are dedicated to
different workloads: storefront metrics, general monitoring of Kafka queues,
containers, etc., and all other application monitoring.

Real user monitoring - RUM (client-side monitoring):

- Understand user experience - deploy 100s of code changes to the app, each change
has the potential to impact performance for better or worse

+ Daily, 20 million RUM measurements across eight stores, hundreds of page types, &
thousands of device types (phones, tablets, laptops & PCs)

What’s next for Wayfair?

Wayfair is in the process of fine-tuning their data pipeline architecture to take advantage
of Kafka in more sophisticated ways. For example, they are working on dynamically
routing data into separate Kafka topics based on tags present in the incoming data. This
will enable them to route data into separate databases within a single instance, or even
separate InfluxDB clusters. This decoupling of the movement of data from its production
and consumption forms the basis for their high availability and disaster recovery
strategies. It will also help them break the cycle of monolithic unscalable systems early
on.

16

@ influxdata®

Wayfair is working strategically with InfluxData to ensure they are on a path that is
scalable, robust, and in line with the future direction of their platform. Wayfair also think
their massive e-commerce platform provides a great set of rich case studies to help drive
InfluxDB further in its support of features that larger enterprises need. The issues which
they’ll continue to hammer concern things such as monitoring, high availability, support

for even greater cardinality, and more elegant solutions for multi-tenant instances.

Technical architecture

Our next-generation pipeline takes advantage of Kafka
and the Telegraf streaming service to create a more
robust data topology. Essentially this allows us to
explicitly implement the four R’s: routability, retention,
resilience, and redundancy.”

Jim Hagan, Manager

17

@ influxdata®

Wayfair’s time series infrastructure using InfluxData is delivering visibility into their

infrastructure as well as client-side monitoring in an efficient and scalable manner.

The four R’s of metrics delivery

Wayfair’s data pipeline built so far for metric collection, delivery, and use utilizes both
Graphite and InfluxDB as a time series platform and sends a diverse set of event trackers,
timers, and other system metrics from over 2,000 VMs running hundreds of applications.

Wayfair’s legacy data pipeline was an elaborate series of services relaying data from data
center to data center over UDP (used to avoid blocking calls from the client). This
configuration works very fast (and even supported replication) but lacks a number of the
elements they are looking for in our metrics pipeline.

Wayfair's next-generation pipeline using Kafka and Telegraf has allowed them to create a
more robust data topology, and effectively, to implement the four R’s of metrics delivery:

« Routability (keep, drop, redirect)

- Retention (keep data in pre-digested, or final format for some time)

+ Resilience (survive network or DC failure, recover data after a DB failure, survive
massive flood of data)

« Redundancy (replication of raw data for failover and purpose built dbs)

18

@ influxdata®

Conceptual Architecture to Support the Four R’s

LOAD RECEIVE/

BALANCE HANDLE BUFFER INGEST PERSIST

Resilience Resilience Resilience Resilience Resilience

Routability Routability Retention Routability Redundancy
Roptability Retention
Redundancy

NGINX Telegraf Kafka

. Kafka Local Telegraf Ingest InfluxDB
(UDP LB) Receiver — Aggregate — 1
>> UDP >> UDP >> TCP >> TCP >> TCP >>TCP

1. Wayfair use the UDP load balancing plugin for Nginx. This allows them to take very
high data rates including 3 to 5 x spikes and efficiently route them to an array of
telegraf hosts; 3 UDP load balancers can feed into dozens of telegraf hosts. In
addition, Wayfair can use different port designations to route traffic. This is giving
them RESILIENCY and a means of top-level ROUTABILITY.

2. Wayfair use several features of Telegraf to perform basic traffic shaping. They use
tag and measurement filters to drop, keep, or route certain metrics to a specific Kafka
topic, and route to specific Kafka brokers. They get both RESILIENCE and ROUTING in
this layer.

3. The local Kafka layer gives Wayfair an immediate place to store metrics coming
into the system. No expensive processing needs to be applied to the data yet. They
configure several different “mirroring” services to copy different topics from local
Kafka instances to what they call “Aggregate” Kafka instances. All of this
communication happens with minimal transformation. Wayfair get RESILIENCE,
ROUTING and RETENTION in this layer.

19

@ influxdata®

Seattle Boston Europe
C1 Kafka C1 Kafka C1 Kafka
LOCAL (write-only) (write-only) (write-only)
C3 Kafka C3 Kafka C3 Kafka
AGGREGATE (read-only) (read-only) (read-only)

The C1 Clusters are used for write-only in the local data centers. In addition, each data

center has an “aggregate” cluster (C3) for consumption of the integrated data stream.

4. Wayfair have a second layer of Telegraf acting as a Kafka consumer. This allows
them to subscribe to topics that they care about and route them to the DB of their choice

They can also deploy multiple layers of ingest and populate multiple databases. They are
getting both RESILIENCE and ROUTING and REDUNDANCY in this layer.

Kafka Topic A p InfluxDB for
(receives metric A) 4 Telegraf Ingest // Topic A
| Consume
Telegraf Receiver Topic A
NGINX | Keep Metric A
(UDP LB) and Metric B
Discard Metric C
I] InfluxDB for
\ (receives metric B) o Telegraf Ingest ~|opicB
| Consume
Topic B

Some Architectural Recipes (Dynamic Topic Routing)

20

@ influxdata®

Some Architectural Recipes (Redundancy)

InfluxDB for
Data Science
(Longer
Retention)

Telegraf Ingest
(Topic A)

Kafka

InfluxDB for
Telegraf Ingest | Alerts (Short
(Topic A) Retention)

UDP LB Data Inbound

== udplbcinl host bo1.csnzoo.com: Inbound traffic on ens:
- udplbcin2 host bol csnzoo.com: Inbound traffic on ens256

Monitoring it All (Load Balancer Layer)

Data I/0O

Telegraf Host Data Inbound (Telegrafreceiver) Telegraf Host Data Outbound (Telegrafreceiver)

13 Mbps
= telegrafreceiver0d host bot Inbound traffic on ens192 ver(bat.cs und traffic

telegrafreceverz hostbot ¢ inbound traffic an ens192 i i 2 : Gutbound traffic ¢
3 Inbound traffic 5192 03.host : Outbound traffic o
telegrafraceiver06 host.bo1.csnzco.com: Inbound traffic an ens192 Mbps ver(2 Outbound traffic on
telegrafreceverns hostbot.cs inbound traffic on ens192 telegrafreceert - : Cutbound traffic
Inbound traffic on ens192 Mbps telegrafreceiv Outbound traffic o
inbound traffic an ens192 ; ver(7 - Cutbound traffic
inbound traffic on ens192 Ny
bound traffic on enst

telegratraceiver02 host.set.cs und tratfic on ens192

Telegraf Host Data Inbound (Telegrafingest) Telegraf Host Data Outbound (Telegrafingest)

15Mb
= telegrafingestor. host.bot Inbound traffic on ens192 — telegrafingesto1.hostbo1.csnz00.com: Outbound traffic on

13m0 - telegrafl : Inbound traffic on ens192 : com: Outbound traff
) = telegrafingest03 ho Inbound traffic on ens192 pestd3.host b com: Outbound traffic
bl inbound on ens192 K grafing : Outbound traff
Inbound
inbound traffic on ens stbot.csnz Outhound traffic
: Inbound traffic on ens192 . : Outbound traffic o
Inbound traffic on ens192 telegrafingest com: Outbound traffic o
inbound traffic on ens192 telegrafinge:)1.€snz00 com: Outhound traffic

 Inbound traffic on es . telografin 1.05n200.com: Outbound traffic o

Monitoring it All (Telegraf Layers)

21

@ influxdata®

: A/\/\M,/\N\’\/

SN
,\,\v\,vN\/\/W‘J\JN

Mﬂw\%ﬁf‘maWMWMW’WM hnd

Monitoring it All (Telegraf Layers)

Real user monitoring to track actual performance

InfluxDB helps deliver accurate performance monitoring, which is crucial for Wayfair’s
Storefront Engineering team. Each day they deploy hundreds of code changes to the
web application for their customer-facing websites, and each change has the potential to
impact performance for better or worse. For this reason, they carefully monitor KPIs such
as page load times to catch regressions, identify opportunities for speedups, and verify
that improvements work in the real world.

As part of their migration from their legacy Graphite backend to next-generation InfluxDB,
Wayfair were able to give their client-side monitoring of page load times in the browser,

known as real user monitoring (RUM), a major upgrade.

RUM systems use JavaScript and standard browser APIs like PerformanceTiming to
record load times experienced by real customers. By tracking performance in real world
conditions, Wayfair can identify issues that would otherwise be invisible. This is
increasingly important as pages become more complex, including resources, images,

fonts, and scripts from a range of third-party servers and networks. 22

@ influxdata®

Wayfair's RUM system was first created using a Graphite time series database for real-
time charts and alerts. Over the years, their RUM dashboards have been incredibly useful
at identifying issues, but there are quirks that make it difficult to interpret the data. RUM is
particularly challenging to measure and visualize due to the wide range of values and
outliers. For example, a page with a median load time of 5 seconds will commonly see
some page loads of 200+ seconds. Just a few outliers can drastically skew the mean, and
the legacy Graphite backend was particularly susceptible to this problem.

Graphite estimates and samples in a few places during data ingestion. In some common
cases those errors compound, resulting in misleading graphs that waste time. The new
InfluxDB back-end doesn’t suffer from that problem, since it uses a true median
calculation, one of many available operators, aggregators and selectors.

InfluxDB schema for RUM

Schemas are the biggest change for application developers who are familiar with
Graphite. InfluxDB supports defined fields and indexed tags for each measurement,
while Graphite uses a plain, unstructured dot-delimited string to identify each
metric.

An example templated Graphite metric:

rum.client_timers.Sdevice_type.Sstore.Spage.Smetric.Sdc.timer.mean

An example query:

rum.client_timers.desktop.wayfair_com.index.speed_index.bo1.timer .mean

The simple structure used by Graphite makes it easy to get started, but complexity
grows quickly as you add facets. For example, in order to break out by browser, the
same measure was stored multiple times, but it was limited to only certain pages to
keep disk usage reasonable on Graphite hosts. Dashboards have to be created with
these limitations in mind, and new views would often require deploying new metrics

to duplicate measures. 2

@ influxdata®

An example templated Graphite metric with browser:

rum.client_timers.Sdevice_type.Sstore.Spage.Sbrowser.Smetric.Sdc.timer .mean

In contrast, designing InfluxDB schema takes a little more time upfront, but it gives you

more power and flexibility. Dashboards are generic and easy to customize. Introspection

queries let you explore data in a natural way to find interesting cross-cuts and

correlations.

Similar to a table in a SQL database, the schema has a field for each value that Wayfair

measure on a page load:

connection_time

load_event_time

dns_lookup_time

receiving_time

dom_content_loaded_time

redirect_time

dom_interactive_time

secure_connection_time

dom_processing_time

speed_index

first_meaningful_paint_time

total_page_load_time

first_paint_time

waiting_for_response_time

Tags (similar to indexed columns in SQL) are used to filter and slice:

browser is_login_recognized
client_type 0s

customer_shard script_name

dc store

24

@ influxdata®

Optimizing the schema

When Wayfair initially deployed the InfluxDB schema and started building dashboards,
they ran into a problem: slow queries and timeouts. This made it difficult to explore the
data and impossible to view a time range of more than a couple of hours. Due to the daily
patterns, the inability to chart the last 24 hours was a dealbreaker, so they had to find a
solution. Engineers from InfluxData visited the Wayfair offices in Boston to put on a
workshop for their application developers. This helped Wayfair's team quickly get up to
speed on the InfluxDB data model and best practices. They learned that query
performance scales with series cardinality, and were able to diagnose the issue with their
RUM schema.

They had inadvertently added a host tag to the schema which recorded the web server
that received the RUM metrics from the browser. There’s no value to filter on that tag, and
removing it reduced cardinality by 600x. After resetting the schema by moving the RUM

measurement to a new cluster, query performance was dramatically improved.

Dashboards

Wayfair use Grafana to build dashboards and visualize data from a variety of sources.
Grafana’s extensive InfluxDB support helped make this a smooth transition.

With Graphite RUM, it was confusing and unintuitive to interpret each graph without a
certain amount of background expertise. InfluxDB has made these graphs more
accessible to a broad audience of engineers and product managers across the Wayfair
organization. On the same token, some filters in Graphite (for example, break out by
browser) were limited to certain pages. With InfluxDB, Wayfair have visibility of full tags
on every page by default.

Dashboards are used to improve customer experience. The Login Status dashboard, for
example, displays when a page is slower for logged in customers, enabling Wayfair to
investigate the cause and fix the bottleneck. 25

'.\

@ influxdata®

Generic RUM Dashboard to View a Single Page and Store

il

“di 'J‘b',“vl“r.'ﬂ NQJ‘W"N Wi ‘?‘4 N "\“’«‘; 0 -\l -,4 J * ’* h ” I 'M.-H_'W ‘I“.’k

AU Ao v T At Pl ok

Al A JL,] A‘WV I ‘wu,\‘ ‘Mu
awvmwwwwwmma*wmw “M‘ 'W«WWW‘*

RUM Overview Dashboard
(To View a Configurable Selection of Important Pages)

{9 88 RUMOverview -

DC bol+sel~

speed_index

= checkout_basket_show == hot desls_hot_desls_display == index == product

et

e b SN
W‘WV M.N,..w e

0400

26

@ influxdata®

RUM Browser Compare Dashboard

s
49 &8 RUM Browser Compare -
 Performance Portal =

ge_load_time ¥ f

superbrowse: total_page_load_time
— p50_otal_page_oad_time chrome
== pS0_total_page_Joad_time edge

P50_total_page Joad_time saferi

1400 1800 2000 0000 20
Traffic - superbrowse: total_page_load_time
= count sotal_page. losd_time
count sotal_page_Joad time sofari
= count sotal_page_load_time edge
= count sotal_pege._Joad time frefax
— counttotal_pege_load_time le
count_ sotal_pageJoad.time other

 Performance Portal =

product_show_pdp: first_paint_time
— logn recogrized faise
= login recogrized_rue

Traffic - product_show_pdp: first_paint_time

= login_recognized true
— login_recognized_false

27

@ influxdata’

RUM with Store Dashboard
(To Compare a Single Page Across all Stores and Data Centers)

{9 88 RUM With Store -

bo1 + sel +ie2 v Page productshowpdp~ DeviceType phone~ Metric speed_index + total_page_Joad_time » 7 Parformance Portal =
speed_index

s0s

ikt w m

L |

s oms oms
1200 1600 2000 0000 0400 0800 1200 1600 2000 0000 0400 1200 1600

== allmodern_com = birchlane_com == jossandmain com = perigold_com — wayfar ca — wayfex_com — slimodem com == birchiane com == jossandmain_com = perigoid com — wayfak_ca — wayfak_com = wayfoi_co.uk w= wayfalr_de

total_page_load_time
s
158

s

;Lﬂllh“_\: ss splkiieabbe | Auas o lh }., b "'

o T ks, o iy ey ”,;.l-«pnw. 'HHM’

L and il g s

oms
1200 1600 2000 00 1200 1600 2000 0000 0490 08:00 2 1600
— allmodern com == birchlane cx - foi_ca = wayfair_c — alimodem com == birchiane com == jossandmain com — perigoid com — wayfa¥_ca — wayfair_com = wayfair_co_uk w= wayfair_de

RUM with Customer Shard
(Load Times During Database Maintenance Work in Which Traffic for Certain Groups of

Customers Was Shifted Between Data Centers)

9 - 88 RUMWithShard - & € ZoomOut 3 @Jun 16,2018 11:59:55 to Jun 17, 2018 00:11:41

ayfair_com + 50+ Performance Portal

product_show_pdp: speed_index

= PS0_speed_index shard_null

P50_speed_index shard 6
P50_speed_index shard 7
= P50_speed_index shard 3
= p50_speed_Iindex shard_1
== p50_speed_index shard 2
PS0_speed_index shard 9
; P50_speed_index shard 5
L, pa— - ~ P50_speed_index shard 8
.
00 19:00 20:00 21:00 2 234 00:00

= p50_speed_index shard 4

product_show_pdp: aggregate speed_index

memwwwwm wvmmav HErE wﬂ« WVWMMMWWM

Traffic - product_show_pdp: speed_index

| | 4
bl i W 1 , , ’ count_speed_index shard_null
N | P \‘VII fo b | count_speed_index shard 7

! J Lt count_speed_index shard_3
! d shard 6
count_speed_index shard

count_speed_index shard 9

count_speed_index shard 5
unt_speed_index shard_1

" 1;*”wnwd-,w WM«»A‘ poy ;‘.:;Aj,':},: A count_speed_index shard 4
el RIS count_speed_index shard_8

@ influxdata®

With InfluxDB, Wayfair is able to represent the full granularity of some of these metrics
due to the different storage architecture used; with Graphite they ran up against the issue
of pre-allocated storage (which consumes space in direct proportion to the number of
series). They had to lower their original metrics granularity or they would have exhausted
all storage in their Graphite cluster. They are also able to hone in on specific areas of
consideration using the where clause.

In short, the following InfluxDB strengths provided the functionality that Wayfair needed
both to monitor performance across data centers and to perform RUM in the context of
rapid growth:

- Central scalable repository for general, critical and business KPIs

+ Resilience and HA

« Cloud-friendly

- Configurable retention policies and sharding options

- Support for granular raw data to capture even rare events

« Support for RUM wide range of data, values and outliers with real-time dashboarding
and alerting

By aligning their time series data infrastructure with their growth requirements and

powering their architecture with the InfluxData modern time series platform, Wayfair have
gained system-wide visibility spanning backend and storefront performance in support of
fulfilling their mission and maintaining their promise to partners, suppliers and customers.

29

@ influxdata®

About InfluxData

InfluxData is the creator of InfluxDB, the leading time series platform. We empower
developers and organizations, such as Cisco, IBM, Lego, Siemens, and Tesla, to build
transformative loT, analytics and monitoring applications. Our technology is purpose-built
to handle the massive volumes of time-stamped data produced by sensors, applications
and computer infrastructure. Easy to start and scale, InfluxDB gives developers time to
focus on the features and functionalities that give their apps a competitive edge.
InfluxData is headquartered in San Francisco, with a workforce distributed throughout
the U.S. and across Europe. For more information, visit influxdata.com and follow us
@InfluxDB.

influxdata®

Try InfluxDB

Get InfluxDB

Contact us for a personalized demo influxdata.com/get-influxdb/

30

https://www.influxdata.com/
https://twitter.com/influxdb
http://influxdata.com/get-influxdb/
http://influxdata.com/get-influxdb/

