

Simplify stream processing

with Python, Quix, and InfluxDB

Hello, nice to meet you! 🁋

Tomas Neubauer CTO & Co-founder, Quix

Previously McLaren technical lead

Racing background

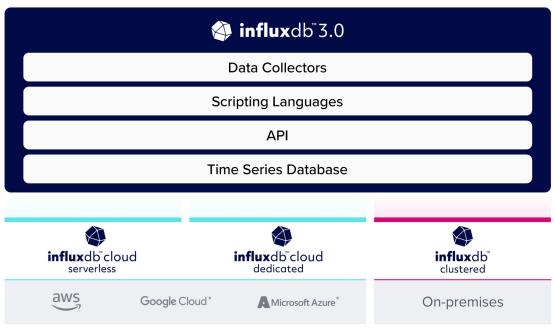
Roots in real-time data processing in the most extreme, time-critical environment.

- 50,000 channels per car
- 1.5 kHz per channel
- 1,000s realtime models and simulations

What is InfluxDB?

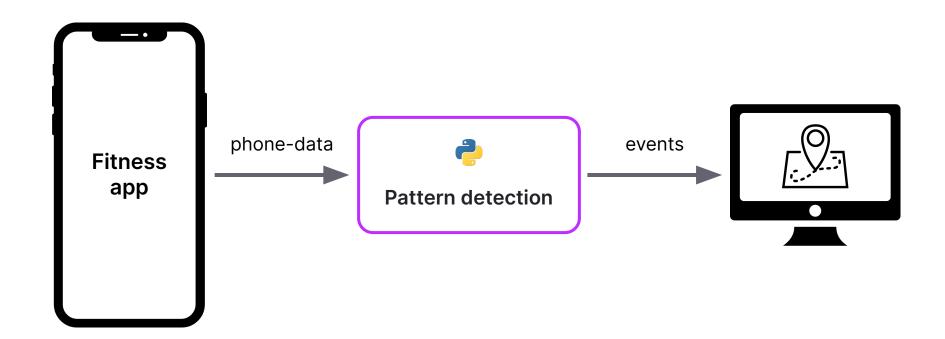
InfluxDB. It's About Time.

Manage all types of time series data in a single, purpose-built database. Run at any scale in any environment in the cloud, on-premises, or at the edge.



* Availability to be announced

Live demo!



Kafka

Streaming

Python

ML Deployment

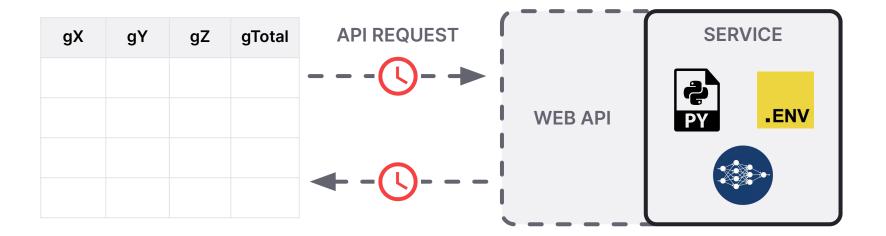
REST API vs Streaming

ML Deployment with API

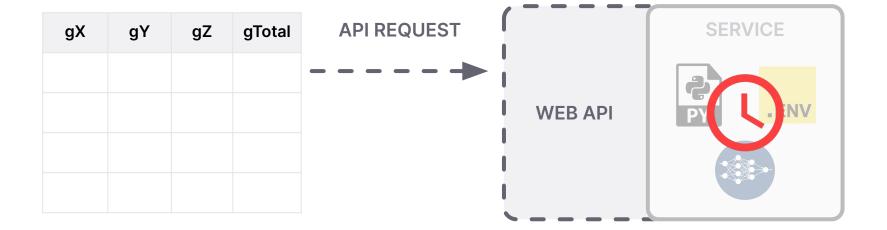
gX	gY	gZ	gTotal	Crash
0.5	0.3	0.1	0.9	1

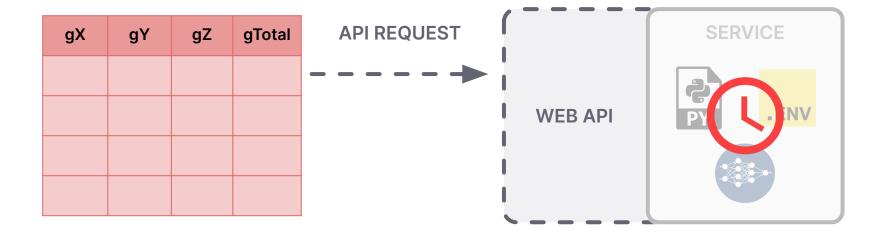
Issues with REST APIs

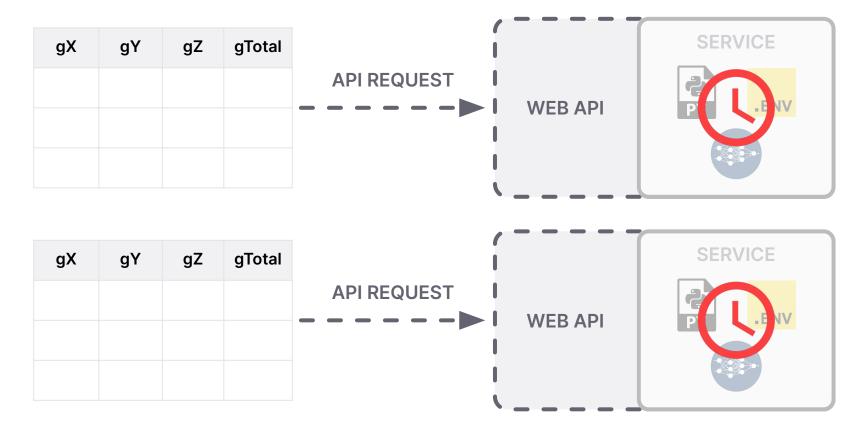
REST API vs Streaming



- CPU overhead
- Introducing delay
- Requests gets lost in case of service downtime or slow performance



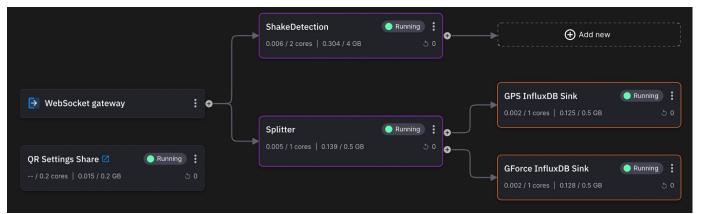




Event streaming applications

What is an event streaming application?

- Built with Kafka & microservices
- Processes and transports data as continuous streams of events
 - Sensor data
 - Mouse clicks
 - Financial data
- Contains a pipelines to ingest \rightarrow process \rightarrow sink data



How to build event streaming apps

Event streaming architecture

When you build **event streaming applications** with **Kafka**, there are two options:

- 1. Just build an application with microservices uses the Kafka **producer** and **consumer** APIs directly
 - combine Kubernetes with Kafka
- 2. Adopt a full-fledged stream processing framework (Flink, Spark streaming, Beam etc.)
 - combine microservices in Kubernetes, Flink cluster, Flink jobs and Kafka

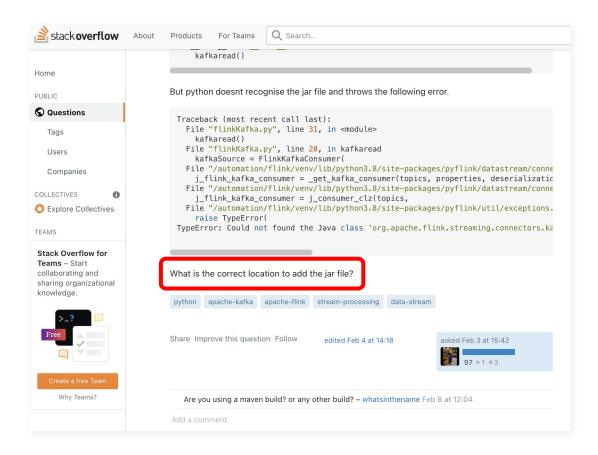
Kafka producer and consumer APIs

- Works for simple stuff like one-message-at-a-time processing
- No external dependencies like JVM
- Gets very complicated when stateful processing is needed like calculation aggregations or joining multiple streams
- CI/CD overhead
 - Manage your own Kubernetes
 - Own **build** and **release** pipelines
 - Build own monitoring and observability

Stream processing frameworks

- Fully fledged stream processing frameworks solves stateful, more complex operations
- You get CI/CD and observability out of box for your data pipelines
 - but not application microservices
- Increased complexity in many dimensions:
 - Java dependency
 - Deployment gets difficult because code is not running on its own but in server side cluster (Flink cluster or Spark cluster)
 - Debugging is difficult
 - Performance optimization is difficult

JAR files...



Connecting Flink to Kafka is difficult

```
CREATE TABLE country target (
country VARCHAR,
avg age BIGINT,
nr_people BIGINT,
PRIMARY KEY (country) NOT ENFORCED
) WITH (
  'connector' = 'upsert-kafka',
  'property-version' = 'universal',
  'properties.bootstrap.servers' = '<host>:<port>',
  'topic' = 'country agg'.
  'value.format' = 'json',
  'key.format' = 'json',
  'properties.security.protocol' = 'SSL',
  'properties.ssl.endpoint.identification.algorithm' = '',
  'properties.ssl.truststore.location' = '/settings/certs/client.truststore.jks',
  'properties.ssl.truststore.password' = 'password123',
  'properties.ssl.keystore.type' = 'PKCS12',
  'properties.ssl.keystore.location' = '/settings/certs/client.keystore.p12',
  'properties.ssl.keystore.password' = 'password123',
  'properties.ssl.key.password' = 'password123',
  'properties.group.id' = 'my-working-group'
);
```

SQL looks easy to use but...

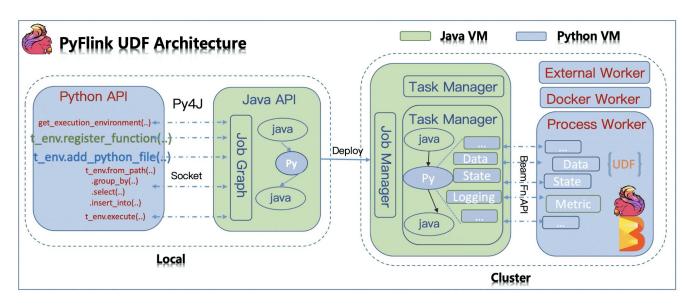
```
select * from country_target;
```

We should see something like this:

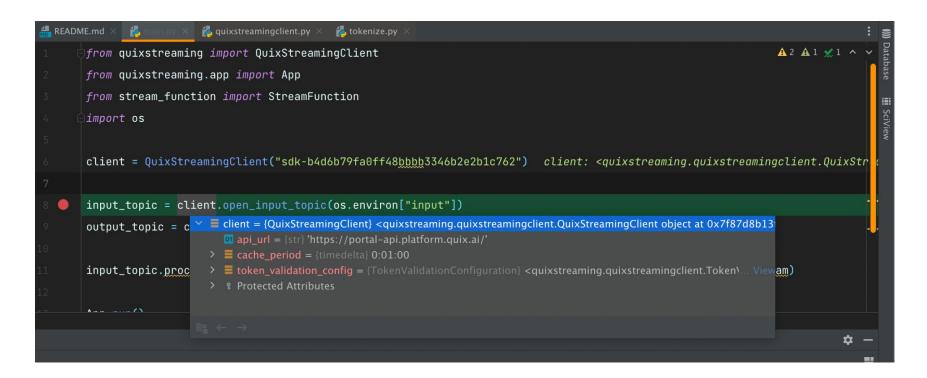
+/-	country	avg_age	nr_people
+	USA	40	1
+	England	35	1
+	Italy	25	1
_	Italy	25	1
+	Italy	35	2

UDFs are nasty

- Poor development experience
 - Logs only accessible from server, no debugging possible
- Performance hit caused by interface between JVM and Python



DEBUGGING!!!



Building your own architecture is costly

Lower

8 months 3 Months 3 Weeks 7 Days **Build infrastructure** Develop Release Observe Effort to build Complex Effectively the first app testing monitoring and Technical complexities debugging Data Orchestration Design complexities consistency and and management synchronisation Platform team: 11 FTE Engineering: 2 FTE + Data team: 2 FTE

Cost & Risk

Higher

One tool to build event streaming apps

Accelerated application development

Weeks

Hours - - - - -

Minutes -

Develop

Use free open-source connectors & code samples to develop faster. Use Python to process streams and get ML predictions.

Release

laC: code, test and deploy event streaming applications with a single source of truth powered by Kafka, Docker and Git.

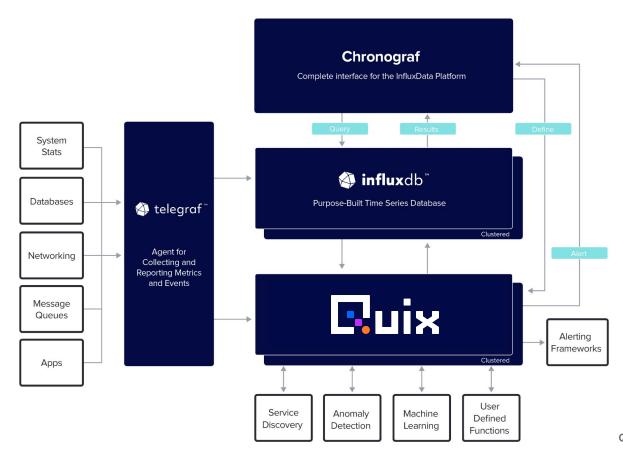
Observe

A suite of observability tools designed to give you in-depth insights into your event-driven architecture.

Engineering: 2 FTE + Data team: 2 FTE

Predictable Cost & Risk

Easily integrate with InfluxDB Cloud?



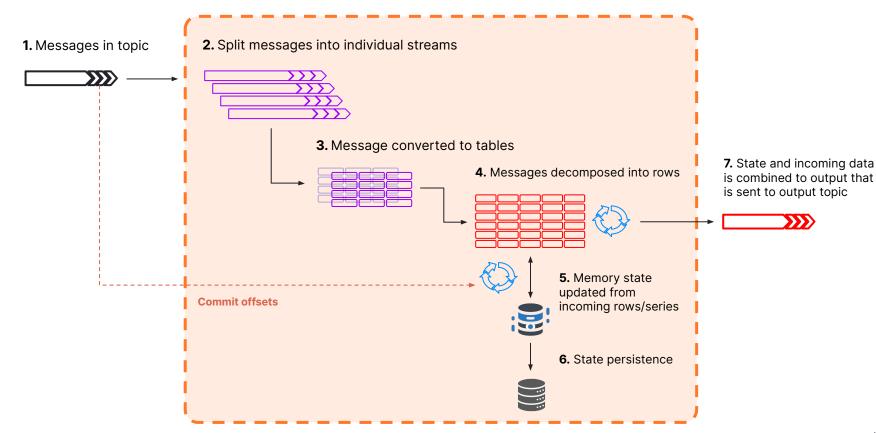
A new way to process streaming data

- Application development environment managing CI/CD and releases for data pipelines, Kafka and microservices in one tool
- Combining Kafka API approach with a **Python stream processing library**
- **Standalone library** that runs:
 - Locally for development and debugging
 - In docker or in Kubernetes for production deployments at scale
- **Seamless integration** with external systems like **InfluxDB Cloud**

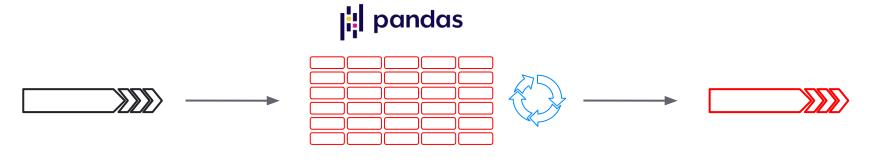
Quix Streams

Python Streaming DataFrames

Stateful processing with Pub & Sub client libraries



Quix Streams PySDF



1. Messages in topic

2. Messages decomposed as rows available via pandas API **3.** Messages processed through pipeline defined as pandas operations. Output streamed to output topic.

- Automatic state management
- Automatic checkpointing
- Automatic message serialization/deserialization

Quix Streams PySDF API

```
# Define topics with serialization settings
input_topic = Topic("input_topic", value_deserializer=JSONDeserializer())
output_topic = Topic("output_topic", value_serializer=JSONSerializer())
# Define a StreamingDataframe to transform the data
sdf = StreamingDataFrame(topics=[input_topic])
# Select only "field_A", "field_B", "field_C" from the incoming message
sdf = sdf[['field_A', 'field_B', 'field_C']]
# Filter only messages with "field_A" > 5 and "field_B" < 4
sdf = sdf[(sdf['field_A'] > 5) & (sdf['field_B'] < 4)]</pre>
# Produce the result to the output topic
sdf = sdf.to topic(output topic)
# Run the dataframe
with Runner(broker_address="localhost:9092", consumer_group="test", auto_offset_r
    runner run(sdf)
```

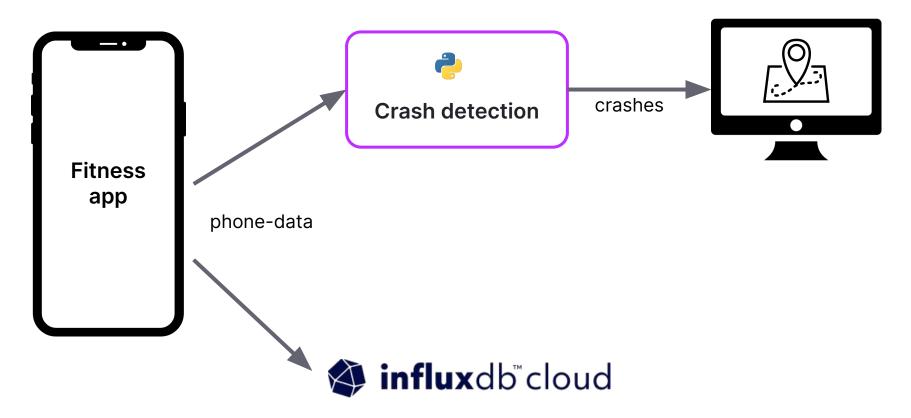
Quix Streams PySDF V1.0 features

```
# Define topics with JSON deserialization
input_topic = Topic("input_topic", value_deserializer=JSONDeserializer())
# Define a StreamingDataframe
sdf = StreamingDataFrame(topics=[input topic])
# Calculate sum of values in "A" over the tumbling window of size 10s
a total 10s = sdf['A'].rolling(period=10, window type='tumbling').sum()
# Update the current message with the result of window aggregation
sdf['A total 10s'] = a total 10s.value()
# Set additional window metadata
sdf['A_total_10s__start'] = a_total_10s.window_start()
sdf['A total 10s end'] = a total 10s.window end()
```

Demo

See it in action!

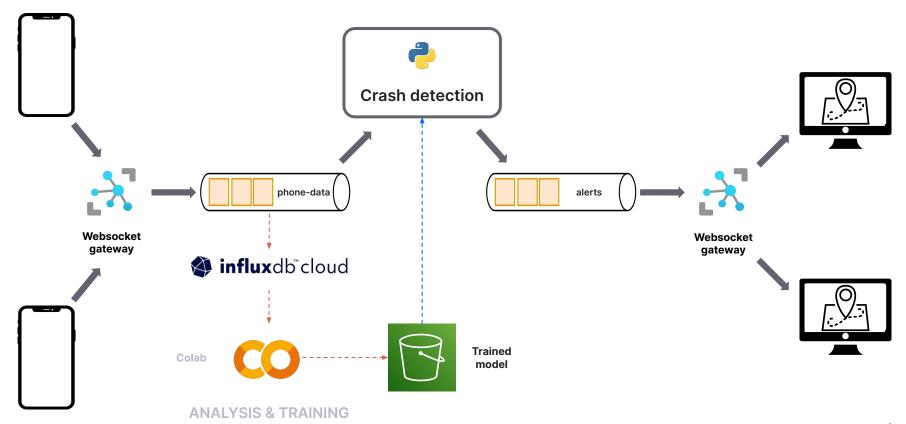
Use case 1: Real-time event detection app



Use case 2: Training real-time ML models with InfluxDB

Use case 2: Training real-time ML models with InfluxDB

Complete event streaming application architecture



How it works

Kafka + Kubernetes + Python

Our approach to stream processing

Containers

Containers running in Kubernetes scaling hand to hand with Kafka for compute scalability.

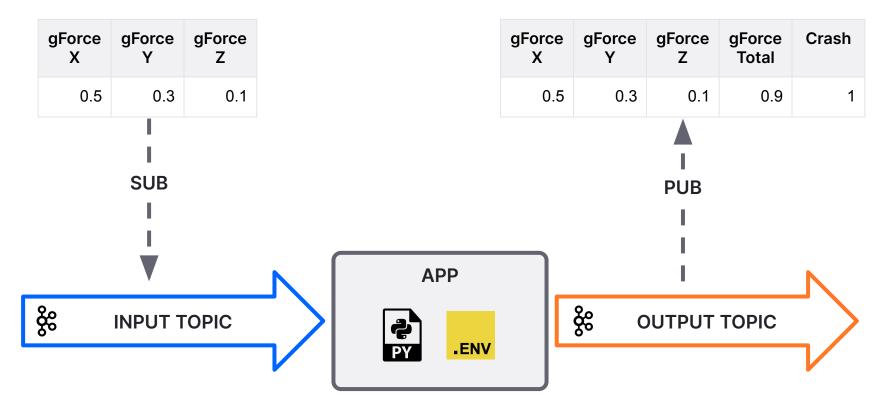
Kafka

Handle your data reliably and efficiently in memory with Kafka. Using Kafka partitions, replica system and persistence to deliver scalability and robustness.

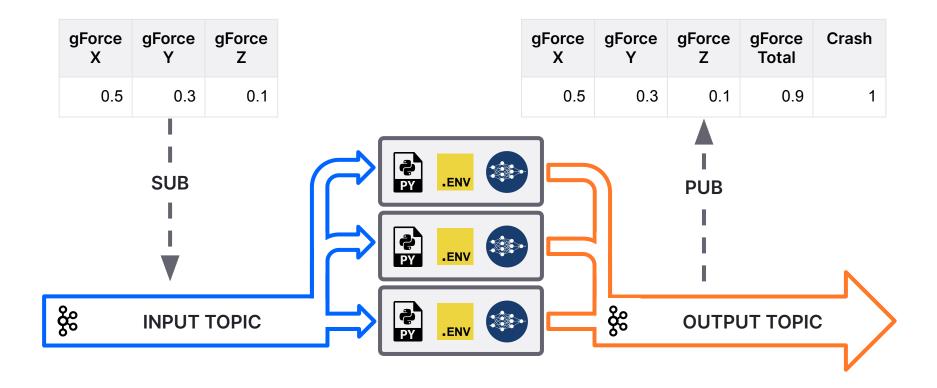
Python

Python gives you flexibility. It lets you transform data, not just query it. From simple filtering to ML use cases like video processing.

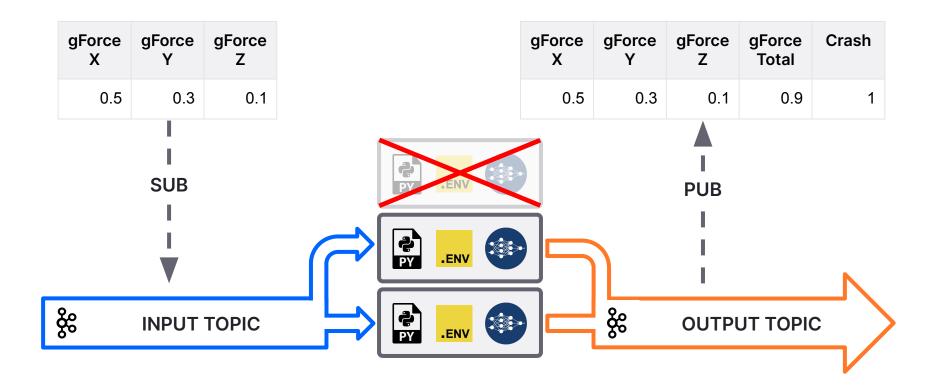
Processing with streaming



Scale



Fault tolerant



Try Quix

Sign up

Thank you

info@quix.io | www.quix.io

InfluxDB Platform

Database & platform for handling time series data at massive scale

