

Best Practices: How to Analyze IoT Sensor Data with InfluxDB

Anais Dotis Goergiou

November 2023

Agenda

- The basics of time series data and applications
- A platform overview InfluxDB, Telegraf, and ecosystem compatibility
- How to start collecting data at the edge and use your preferred IoT protocol (i.e. MQTT)

Anais Dotis-Georgiou Developer Advocate

Time Series Data

What is Time Series Data?

A sequence of data points, typically consisting of successive measurements made from the same source over a time interval.

Sensors in the physical world

Instrumentation of the virtual world

EXAMPLES

- Weather conditions
- Stock prices
- CPU use
- Healthcare Metrics
- Logs
- Traces

Metrics, Events, and Traces

MetricsUsually derived through sampling, usually numeric, and
typically regular in period.

Events Usually emitted, on-event or on-exception. Can be either numeric or strings. Irregular period by nature.

Traces Bundled and uniquely labeled collections of related metrics and events related to a specific transaction or interaction. Irregular period and explicit duration.

Timestamp Precision

- Relative time :since epoch:
- Ideal to create early and maintain throughout pipeline
- Must consider implications of aggregation vs truncation
- Use cases: event ordering, correlation, time-bounded analytics

Precision	Description	Example
ns	Nanoseconds	1577836800000000000
us	Microseconds	1577836800000000
ms	Milliseconds	1577836800000
S	Seconds	1577836800

Data Granularity

- Loosely coupled to precision
- Also referred to as "sample rate"
- Refers to the number of discrete samples per series per window of time
- Reduce granularity through aggregation and roll-ups
- Ideally retain data shape through advanced post processing like SDA or Holt-Winters or raw-retention

Key Drivers for Time Series Applications

ACCESS

Time Series Data from Assets and Applications

ANALYZE

Performance, Availability, and Security

ACT

Improve and Expand the Business

Key Components of Time Series Applications

Time Series Data in InfluxDB

InfluxData Reference Architecture

InfluxDB Platform

InfluxDB's new storage engine is built on

- 🛗 Rust
- Apache Arrow
- 🗐 Apache Parquet
- Arrow Flight
- 💩 DataFusion

SQL and InfluxQL Support

Massive growth of instrumentation data

By 2025, data creation will grow to more than

180 zettabytes*

(An increase of 118.8 zettabytes since 2020)

1 Zettabyte = 1 Billion Terrabytes = 1 Trillion Gigabytes = 1,000,000,000,000,000,000 bytes

Benchmarks for InfluxDB 3.0

InfluxDB 3.0 is up to 45x Faster for Recent Data Compared to InfluxDB Open Source

Dataset for Benchmark:

- Dataset duration: 24 hours
- Measurement interval: 10 seconds
- Cardinality: 160,000

Benchmarks for InfluxDB 3.0

Data Ingest Performance

Results represent 21.5 hours of metrics reported from varying load of Telegraf instances.

Storage performance

When it comes to data compression, InfluxDB 3.0 outperformed InfluxDB OSS by roughly **4.5x**. The cost saving is maximized because InfluxDB 3.0 uses object storage which is cheaper than the SSD (Solid State Devices) based storage used by InfluxDB OSS.

Storage Size on Disk

You have probably used InfluxDB

Functional Architecture

Line Protocol

ALL time series data is written to InfluxDB using Line Protocol, and uses the following format:

<measurement>[,<tag-key>=<tag-value>] [<field-key>=<field-value>] [unix-nano-timestamp]

Measurement	Tag Set	Field Set	Timestamp
cpu_load,	hostname=server02, us_west=az	temp=24.5, volts=7	1234567890000000

Where data is formatted as line protocol is user and use case specific. Telegraf provides significant shortcuts for many popular data sources and formats, and new Cloud-Native Data Connectors provide JSONPath and Regex parsing solutions to work with more unstructured data. Customers often build telemetry pipelines specifically for LP delivery to InfluxDB

Fields and Tags

sample time: Friday July 15 2022 15:40:50 GMT machine id: SN0039992 (TAG) lab id: MEDF-MA-US01 (TAG) patient id: 123456789A (TAG) sample volume: 23.24 (FIELD) sample units: ml (TAG) cell count: 234 (FIELD)

- Tags are like labels, designed to further specify and disambiguate similar signals. They are indexed for fast seek, filtering, and grouping.
- Fields are the primary numerical and other values to be monitored. They are not indexed as stored values are highly variable.
- Tags are best for metadata, Fields are best for samples

Interoperability with InfluxDB 3.0

Interoperability

- Client Libraries:
 - <u>https://docs.influxdata.com/influxdb/cloud-serverless/reference/client-li</u> <u>braries/v3/</u>

Interoperability: Visualization Tools

$\label{eq:constraint} \Leftrightarrow \ \leftarrow \ \rightarrow \ \boxdot \ \cdot \ \boxdot \ \ c_{\bullet} \ \ c_{\bullet} \ \ \circ \ \odot$		" L L - Ø - T I I Standard ▼ III - T ~	宁 📑 Show Me
Data Analytics <	Pages	III Columns MINUTE(Time)	
Summarize		E Rows SUM(Co) ス	
 Constant Line Average Line Median with Quartiles Box Plot Totals 	Filters	Co over time ⁸⁰ 70	Forecast indicator Actual Estimate
Model Image: Average with 95% CI Image: Median with 95% CI Image: Trend Line Image: Forecast Image: Cluster Custom Image: Reference Line Image: Reference Band Image: Distribution Band Image: Box Plot	Automatic Image: Color Size Label Oco Detail Tooltip Path Image: Forecast ind	S 40 S 40 S 40 D D A:54 PM 5:04 PM 5:14 PM 5:24 PM 5:34 PM 5:44 PM 5:54 PM 6:04 PM Minute of Time [March 22, 2023]	

90 marks 1 row by 1 column SUM(Co): 4,312.24

Projects

Mage and InfluxDB

[[inputs.mqtt_consumer]]

```
## Broker URLs for the MQTT server or cluster. To connect to multiple
## clusters or standalone servers, use a seperate plugin instance.
     example: servers = ["tcp://localhost:1883"]
##
##
              servers = ["ssl://localhost:1883"]
              servers = ["ws://localhost:1883"]
 ##
#servers = ["tcp://telegraf_mqtt_mosquitto_1:1883"]
servers = ["tcp://mosquitto:1883"]
## Topics that will be subscribed to.
topics = ["machine/#"]
qos = 2
## Connection timeout for initial connection in seconds
connection timeout = "30s"
data_format = "json_v2"
```

```
[[inputs.mqtt_consumer.json_v2]]
measurement_name = "machine_data"
[[inputs.mqtt_consumer.json_v2.object]]
path = "@this"
disable_prepend_keys = true
tags = ["metadata_machineID", "metadata_provider"]
excluded_keys = ["metadata_barcode"]
```


Quix

IoT Use Cases Ĩ ŢŢŢP Industrial IoT

• Enterprise IoT

InfluxDB customers in IoT

Resources

- InfluxDB Community: https://github.com/InfluxCommunity
- Mage Demo:
 - <u>https://github.com/InfluxCommunity/Mage_Demo</u>
 - <u>https://www.influxdata.com/blog/mage-anomaly-detection-influxdb-half-spa</u> <u>ce-trees/</u>
- Quix Demo:
 - <u>https://github.com/InfluxCommunity/quix-anomaly-detection-example</u>
 - <u>https://www.influxdata.com/resources/simplify-stream-processing-with-pyth</u> <u>on-quix-and-influxdb/</u>
 - <u>https://www.influxdata.com/blog/quix-community-plugins-influxdb-build-stre</u> <u>aming-task-engine/</u>
- Docs: https://docs.influxdata.com/influxdb/cloud-serverless/

Join InfluxDB University

InfluxDB Resources

Webinar: Gain Better Observability with OpenTelemetry and InfluxDB

Leverage OpenTelemetry and InfluxDB to collect and analyze metrics, logs, and traces, enabling better anomaly detection, root-cause analysis, and alerting.

Watch now

bit.ly/3qhemCw

Save 96% on Data Storage Costs:

Learn more

bit.ly/3NJEcGZ

Run a Proof of Concept:

bit.ly/3puRsal

ΤΗΑΝΚΥΟυ